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A Review of Machine Learning Applications for Energy Consumption Forecasting in
Schools

Una Revisión de las Aplicaciones del Aprendizaje Automático para la Previsión del
Consumo Energético en las Escuelas

Thu Pham1

Abstract: As schools face growing energy demand under constrained budgets, accurate energy
forecasting using Machine Learning has become crucial for improving efficiency and planning targeted
energy management strategies. This review examines studies that apply ML techniques in forecasting
school and campus energy demands. Based on the methodology of these works, a generalized forecasting
framework is proposed, which detailedly outlines: data preprocessing, feature selection, model selection,
and implementation of results to guide implementation. Across studies, historical load, weather
conditions, occupancy and building attributes are among the most reliable predictors of energy demand.
Advanced models such as hybrid LSTM architectures or ensemble approaches generally achieve higher
accuracy but require a larger complete dataset, increased computational costs and intensive
hyperparameter tuning which limits their feasibility in resource-limited school settings. Simpler and more
interpretable alternatives such as MLR often offer sufficient accuracy for schools with limited data
availability and resources. Future studies should focus on addressing existing gaps by ensuring
transparency and consistency in data and methodological reporting.
Keywords: Machine learning; School energy management; Load forecasting methodology; Review
paper.

Resumen: A medida que las escuelas se enfrentan a una creciente demanda energética con presupuestos
limitados, la previsión energética precisa mediante el aprendizaje automático se ha convertido en un
factor crucial para mejorar la eficiencia y planificar estrategias de gestión energética específicas. Esta
revisión examina los estudios que aplican técnicas de aprendizaje automático en la previsión de la
demanda energética de escuelas y campus. Basándose en la metodología de estos trabajos, se propone un
marco de previsión generalizado que describe detalladamente: el preprocesamiento de datos, la selección
de características, la selección de modelos y la aplicación de los resultados para orientar la
implementación. En todos los estudios, la carga histórica, las condiciones meteorológicas, la ocupación y
las características de los edificios se encuentran entre los predictores más fiables de la demanda
energética. Los modelos avanzados, como las arquitecturas híbridas LSTM o los enfoques de conjunto,
suelen alcanzar una mayor precisión, pero requieren un conjunto de datos completo más amplio, mayores
costes computacionales y un ajuste intensivo de los hiperparámetros, lo que limita su viabilidad en
entornos escolares con recursos limitados. Alternativas más sencillas e interpretables, como el MLR,
suelen ofrecer una precisión suficiente para las escuelas con disponibilidad de datos y recursos limitados.
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Los estudios futuros deberían centrarse en abordar las lagunas existentes, garantizando la transparencia y
la coherencia en los datos y la presentación de informes metodológicos.
Palabras clave: Aprendizaje automático; Gestión energética escolar; Metodología de previsión de
carga; Artículo de revisión.

INTRODUCTION

Context and Motivation
Schools are among the most significant energy consumers in the education sectors, yet they often

operate under strict budgetary and infrastructural constraints. Their energy consumption is majorly
influenced by various factors, including academic schedules with breaks and holidays, varying occupancy
levels, diverse facility usage patterns, and building characteristics, all of which are further influenced by
geographic location and seasonal variations that drive heating and cooling needs [1]. These specific
characteristics when combined with aging infrastructure, limited funding for upgrades, and the absence of
intelligent energy management systems, often result in unnecessary energy waste and increased
operational expenses [2].

This resource inefficiency places a heavy burden on schools’ finances, which are already tight due
to a lack of governmental funding. In fact, this burden is evident across numerous researches in different
countries, with research by Bray et al. [3] showing that school and university buildings consume
approximately 60% more energy than commercial office spaces for example. In Saudi Arabia for
instance, public educational buildings alone are responsible for approximately 13% of national energy
use, largely due to inefficient lighting and air conditioning systems, according to Alshibani (2020) [14].
According to the U.S. Department of Energy [5], K-12 school districts spend “nearly $8 billion annually
on energy costs”, which accounts for the second largest expense after personnel costs. The U.S.
Environmental Protection Agency (EPA) states that nearly 25% of the energy consumed in American
schools is wasted, an inefficiency that, if addressed, could save up to $20 billion over a ten-year period
[4].

Beyond financial strains and increased operational costs, this inefficiency is detrimental to
students’ education and wellbeing as wasted spending diverts the already scarce resources due to limited
governmental funding that public schools receive away from educational purposes such as instructional or
facility qualities. Public schools in socioeconomically disadvantaged areas are particularly vulnerable as
they are more likely to operate in older, inefficient buildings [6] and are less likely to have access to
energy-efficient upgrades or advanced forecasting tools. Huang et al., in a study of 3,672 schools in
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Ontario, found that energy consumption had the strongest negative correlation with students’ learning
ability [7], which underscores how inefficient energy use perpetuates educational inequity by
disproportionately affecting low-income students.

This pressing issue underscores the urgent need for intelligent solutions that enable schools to
better manage energy use and allocate resources more effectively. In recent years, machine learning (ML)
models have emerged as powerful tools in energy consumption forecasting using historical energy data,
weather information, occupancy rates, school schedules, and data that are specific to K-12 school settings.
Schools could greatly improve their energy management as accurate forecasting allows them to to make
informed decisions on future energy usage based on previous patterns, such as pre-schedule HVAC
systems (e.g., heating or cooling the building before occupants arrive), avoid running systems during idle
times such as holidays or events, reduce heating at unoccupied hours [9], and predict peak cost hour to
shift usage to cheaper off-peak hours.

Literature review
Although public schools are critical infrastructure and major building energy consumers, there is a

clear lack of a comprehensive synthesis of ML-based forecasting specifically in school environments.
Most data-driven forecasting research has focused on commercial buildings or aggregated public building
stocks rather than on K–12 or typical school facilities [7]. This is due to the intrinsic complexity of school
buildings: they have highly variable daily and seasonal occupancy driven by class schedules,
extracurricular events, and holiday calendars; they also often combine mixed uses (classrooms, gyms,
cafeterias, auditoria); and they frequently operate on a strict budget [7].

A growing number of public schools and educational facilities around the world have begun
incorporating ML models into their energy management strategies, with varying levels of forecasting
accuracy and impact on efficiency. Models such as Multiple Linear Regression (MLR), Artificial Neural
Networks (ANN), Support Vector Machines (SVM), Random Forest (RF), Multilayer Perceptron (MLP),
and Long Short-Term Memory (LSTM) networks have been tested across diverse educational settings in
different countries. For instance, in Croatia’s Osijek‑Baranja County, multiple linear regression (MLR)
and artificial neural network (ANN) models were applied to primary and secondary school electricity
data: ANN achieved R² ≈ 0.957 in training (vs. 0.950 for MLR), with CV(RMSE) ≈ 19.8 % which shows
high variance in energy consumption and potential inefficiencies in resource use for schools built in
differing conditions. In Eastern Province, Saudi Arabia, a regression-based model using 350 school
observations demonstrated prediction accuracy over 90 %. The study identified AC capacity and roof area
as strongest predictors influencing consumption, suggesting how these models are able to pinpoint the
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cause being infrastructure design that drives inefficiency. Capozzoli et al. (2015) analyzed annual energy
demand for heating across 80 Italian schools using Multiple Linear Regression (MLR) and Classification
and Regression Trees (CART); both achieved strong accuracy (R² ≈ 0.85; MAPE ≈ 15%) but CART was
able to provide interpretable insights on key drivers of energy use such as floor area and occupancy [68].
Amber et al. (2017) also applied MLR to forecast daily energy use of a university over a five-year period,
and the model achieved a RMSE value of around 12-13% [69]. Similarly, many studies utilized tree-
based and ensemble techniques in school energy forecasting. Tariq et al. (2024) compared Decision Trees
(DT), k-Nearest Neighbors (KNN), Gradient Boosting Regression (GBR), and Long Short-Term Memory
(LSTM) networks for energy forecasting in 352 schools, and reported that DT yielded low training error
(3.58%), while KNN overfitted, and GBR and LSTM performed better across wide data ranges; school
size and AC capacity were the most influential variables [70]. Khaoula Elhabyb et al. (2024) [65]
compared GBR, RF and LSTM models using data from three university buildings, and reported that GBR
yielded the most accurate forecasts. Recently, more studies have chosen neural network techniques to
capture non-linear relationships, such as Ganesh Doiphode and Najafi (2020b) who trained a Multi-Layer
Perceptron on three years of monthly data of 25 K-12 schools in Florida [71]. Geraldi and Ghisi (2020)
modeled electricity consumption for 90 public schools in Brazil using Bayesian Networks on three years
of monthly billing data and survey inputs, and captured key insights such as the number of students being
a more reliable predictor than floor-plan [72]. Hybrid models with optimization algorithms have also been
commonly used, as Khan et al. (2025) compared ARIMA with a Quantum-Inspired Particle Swarm
Optimization (QPSO)–tuned RNN on building-load data, and reported the latter achieve the lowest error
(MAE = 15.2; RMSE = 22.8), showing the advantage in accuracy improvement that hyperparameter
tuning brings [73]. Current reviews report several consistent limitations that exist within this field of ML
applications for load forecasting. Multiple reviews point out the absence of datasets to the public [74],
and call for public data to enable generalizability and reproduction. Zhang et al. (2021) also identified that
most papers overly focus on the machine learning development while the data side (data resolution,
training/testing data split, etc.) are insufficiently discussed [75]. Notably, most studies focus on residential
building load forecasting [76], leaving educational buildings underresearched.

This systematic review aims to address the gap on Machine Learning applications in school energy
forecasting specifically by synthesizing the methodology of forecasting across different models in
different countries; comparing the most commonly employed models in terms of dataset characteristics,
input features, and forecasting accuracy; reviewing representative case studies to identify regional
patterns; analyzing dataset characteristics and performance results; as well as identifying challenges and
opportunities in widespread implementation. The overall purpose of this review is to inform readers of the
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practicality and effectiveness of ML-based forecasting models, with the broader goal of encouraging the
widespread integration of energy management systems in schools worldwide to reduce waste, redirect
resources towards improving students’ education, and move a step closer to achieving equity in
educational opportunity. In addition, this survey paper also seeks to inform and provide accessible
guidance by generalizing replicable methods and explaining the various complex concepts in a simplified
way so that stakeholders, policymakers, and school administrators without much background on Machine
Learning can more easily apply those understandings into the integration of energy management systems.

METHODOLOGY

Review scope and criteria
This systematic review focuses on high quality peer reviewed literature that apply machine

learning techniques to forecast energy consumption in school or educational building contexts, including
K–12 and higher education buildings where methods are transferable to K–12 settings.

Due to the rapidly changing nature of machine learning methods and data availability, the review
only includes recent studies published between 2019 and 2025 to ensure currency. Quality, reliability and
relevance to the central topic of school energy forecasting determine final inclusion.

Databases searched and search terms
Databases searched include Google Scholar and major academic publishers and bibliographic

databases to maximize coverage of peer reviewed and conference literature: Scopus, MPDI, IEEE Xplore,
Sage Journals, ScienceDirect (Elsevier), SpringerLink, JSTOR, and arXiv for preprints. Additionally,
PubMed Central was used primarily to gather insights on the impacts of poor energy management on
students’ health and academic performance.

Example search terms used included combinations of the following key words and phrases
● "machine learning" AND "energy forecasting" AND (school OR "K-12" OR "educational

building" OR "school building")
● "deep learning" AND "building energy" AND (school OR "K-12")

○ "LSTM" OR "ANN" OR "random forest" AND "school energy" (keywords change
depending on the ML methods being researched for different sections)

● "load forecasting" AND "school" AND ("occupancy" OR "schedule")
● "energy prediction" AND "educational" AND ("machine learning" OR "deep learning")
● "building energy forecasting" AND ("public school" OR "K-12")
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● “energy forecasting” AND “school” AND “case studies”

Selection process
This review strictly followed the PRISMA approach, which details the number of sources

identified, the screening process, sources included and excluded, and reasons for exclusions.

FIGURE 01: Studies selection process based on criterias using the PRISMA approach.

SOURCE: Prepared by the authors (2025).

During the identification phase, database queries and backward citation retrieved 13 studies for in-
depth review, and a total of 76 papers for references. Afterwards, the screening process is carried out,
which removes sources with duplicated or similar titles or abstracts. Papers that passed this screen stage
underwent full text review for eligibility based on the following inclusion and exclusion criterias:
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● Empirical studies, reports, or conference papers published between 2019 and 2025.
● Studies with a high relevance to the topic, meaning they apply machine learning or deep learning

algorithms to forecast energy consumption or energy-related variables in school or educational
buildings, or other campus studies where models are transferable to K–12 schools.

● Papers that adequately report model architecture or algorithm, input features, dataset size and
temporal resolution, and at least one performance metric to allow performance assessment in the
review

● Full text in English is available
Conversely, studies that are not relevant to the review, such as papers that focus exclusively on

residential or commercial buildings without transferable application to school buildings are excluded.
Sources published before 2019, sources without available full text or opinion pieces without adequate
methodological details are similarly omitted.

Synthesis method
To synthesize the findings, Table 1 gives a structured qualitative analysis that systematically

integrates findings across studies to highlight similarities and differences in results regarding model
performance, settings, input features and implementation practicality. Results from the different case
studies reviewed are standardized using the generalized framework in Section 4, which outlines some of
the most common data features, preprocessing procedures, training and validation methods, and
hyperparameter optimization techniques. Finally, in the discussion section each model category is then
comparatively analyzed based on the quantitatively and qualitatively reported performance, data demands
and computational complexity. This synthesis method allows the review to recognize the similarities and
differences across studies, and thus drawing generalizations that could support decision making for school
administrators.

RESULTS AND DISCUSSION

Case Studies Analysis
The case studies that form the foundation of this review paper encompass more than a dozen cases

of ML-based models being implemented in real-world settings in Asian, European, Latin America and
Middle Eastern countries, representing a range of school building levels (K-12 classrooms, secondary
schools, university campuses). Different studies in different settings reflect the unique characteristics of
the country in which it was conducted (for example, outcomes are often shaped by the country-specific
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climate conditions that strongly influence energy demands), as well as the specific models used in each
study.

Case studies [9] to [21] will be grouped and discussed systematically based on the family of the
models used, while also noting their climate and geographical context, then compared and synthesized
using standardized tables. Synthesizing the current limited number of case studies in the field will be
especially useful for identifying patterns, methodological trends, and general frameworks, since energy
forecasting in schools are rather fragmented and context-specific; most papers are case studies rather than
large multi-country datasets.

Table 01 provides the overview of recent literature (2019-2025) on energy consumption
forecasting in school settings by summarizing studies from multiple countries using different models,
presenting results and allowing side-by-side comparisons.

TABLE 01: Summary of published articles on schools using ML applications for energy demand
forecasting

Refe
renc
e

Dataset and
Country/region

Objective Techniques Input
features

Evaluation
metrics

Reported
results

Limitations/
Future
suggestions

[9]
Run
et al.
(202
3)

Dataset
collected from
school
buildings in
the South of
France using
sensors: CO₂,
indoor temp,
indoor
humidity
sampled every
15 minutes;
electricity
consumption
and outdoor
climate data
sampled
hourly.
Analysis is
done over five
months
(November
2021 to April
2022)

Build a
preliminary
MLR model to
predict hourly
electricity
consumption in
winter for
school
buildings
Present case
study on three
school/universi
ty buildings
(GEII, GMP,
GC) in
Southern
France

MLR
(built two MLR
forms: one-way
and two-way
interaction
models)

Level of
indoor CO₂
Indoor
temperature
Indoor
humidity
Outdoor
temperature
Outdoor
humidity
Global solar
radiation
Day index
(weekday/w
eekend)
Time index
(occupied/n
on-
occupied)
Building net
floor area

R²
MAE (kWh)
MSE (kWh)
MAPE (%)
RMSE
(kWh)

Two-way
interaction
model reported
better R² for
both training set
(R² ≈ 74%) and
testing set (R² ≈
77%) compared
to one-way
model, but
underestimates
results for
higher loads (≥
30kWh/hour)
Per-building
performance
differs: GMP
best (R²≈76%,
MAPE≈22%),
GC moderate
(R²≈64%,
MAPE≈26%).
Performed
poorly on GEII
building
(R²≈55%,
MAPE≈69%)

Pre-selected
predictors
might not be
the most
influential
variables
Recommend
adding up to 7
hours lagged
climate/indoor
variables such
as delayed solar
radiation, and
also adding
occupancy rate
as additional
predictors
Validation step
should be
included

[10]
Moh
amm
ed et
al.
(202

Dataset
collected from
active schools
in eastern
province of
Saudi Arabia

Propose a
multiple
regression-
based model
for estimating
energy

MLR City
(location)
AC capacity
Number of
floors
Total roof

R² More than 90%
of the
predictions had
errors of less
than 15%
Standard

Authors imply
that future
works need to
expand input
data to include
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1)
316 data points
were used to
train, 35 for
validation

consumption in
Saudi Arabian
schools

area
Type of
school
Number of
staff
Building
age
Number of
students

deviation for
residuals was
28,764.02 kWh
Sensitivity
analysis
revealed that
AC capacity and
building age had
the most impact
on the output
consumption

other factors
(construction
materials, roof
shape, school
orientation, and
floor material)
and add more
training
instances

[11]
Chu
ng
and
Yeu
ng
(202
0)

Obtained 121
questionnaires
results (out of
472 secondary
schools reach
out in
Hongkong)
with no
missing data

Target ≈
annual energy
use (sum of 12
months of
utility bills)

Produce
forecasting
models with
variables that
school
managers can
act on (lighting,
AC,
management
practice) using
BS regression
as the baseline
and compare
that with CNLS

BS regression
CNLS regression

Building
geometry
Lighting
characteristi
cs
(T5/T8/LED
shares,
lighting
control)
AC
characteristi
cs
Number of
classes
(proxy of
ICT counts
due to low
cross-school
variance)
Managemen
t practices

R² BS regression
(one variable):
R² ≈ 0.316
CNLS
regression (five
variables): R² ≈
0.444
Best CNLS
regression
model recorded
adj-R² ≈ 0.654
CNLS
regression
improved
goodness of fit
compared to BS
models

1-year
consumption
record limits
temporal
analysis of
weather factors
and
heating/cooling
degree days
CNLS models
can be difficult
to interpret
Methodology:
Few schools
returned their
questionnaire
late and small
sample size
Large number
of hyperplanes
is
disadvantageou
s

[12]
Pras
ad
(202
4)

Sampled 173
schools in Fiji;
154 sampled
schools were
grid connected
Regression
modeling took
only 75 data
points out of
151 data points
(due to
missing value)
55 used for
constructing
regression
models, 20 for
testing

Determine
factors
affecting
electricity
demand in
Fijian schools;
assess and
compare MLR
and ANN
performance;
constructing
these models
for electricity
demand
prediction in
grid-connected
schools

ANN
MLR

Electricity
demand
(dependent
variable)

Independent
variables:
Age of
schools
Number of
classrooms
Floor area
Number of
buildings
Number of
air
conditioners
Number of
students
Number of
lights
Number of
teachers

R²
RMSE

Optimum ANN
model had the
second highest
R 2 of 95.3%
and the second
lowest RMSE of
59.4 kWh/year,
outperforms
optimum MLR
model (R² ≈
95.3% vs R² ≈
73.3% and
RMSE ≈ 59.4
kWh/year vs
RMSE ≈
0.2248)
Determined
Light is the
most influential
variable
affecting
electricity
demand,
followed by
number of air
conditioning
systems, school

Capacity of
different
electrical
appliances used
was not
considered
while
constructing the
regression
models
Future
directions and
recommendatio
ns:
If electricity
demand data,
floor area data
and number of
students could
be accessed to
construct a
large dataset,
then more
robust
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type, and school
category

predictive
models could
be implemented
Behavior of
students and
teachers can
also be studied
on how those
change energy
demand
Schools are
commended to
carry out
energy audits to
keep track of
energy use and
for comparative
studies

[13]
Begi
ć
Jurič
ić
and
Krsti
ć
(202
4)

Dataset
retrieved from
Energy
Management
Information
System of
electrical
energy usage
for 149 school
buildings in
Croatia's
Osijek-Baranja
County
105 buildings
(70.5%)
training; 44
(29.5%)
validation
Enhance
robustness by
accounting for
diverse school-
building
practices
(include both
primary and
secondary
schools)

Identify factors
influencing
annual
electrical
consumption
(AEC) in
school
buildings in
Osijek-Baranja
County,
Croatia
Develop and
evaluate
accuracy of
ANN and MLR
prediction
models to meet
practical needs,
compare the
trade-offs
between model
complexity and
usability

ANN
MLR

Total
number of
users
Total useful
surface area
Heated
volume of
the building

R²
MSE
MAPE
RMSE
CV RMSE

Total area (A) is
the strongest
predictor of
annual electrical
consumption (R
≈ 0.944)

ANN achieved
slightly better
performance
than MLR
model in both
training (R² ≈
0.957 vs 0.950)
and validation
(R² ≈ 0.954 vs
0.949), with
slightly lower
RMSE and
CVRMSE

Potential
limited
generalizability
to other regions
with different
climatic
conditions and
building
practices
ANN model
requires
significant
computational
resources and
expertise to
implement and
interpret
Proposed future
direction:
Validation of
the model in
various
geographical
settings, collect
data from
schools in
different
regions and
consider their
different
characteristics.
Extend the
study over a
long-term
period

[14]
Alsh
ibani
(202
0)

Energy
consumption
records for 352
schools (nine
cities and four
different

Identify factors
that influence
school energy
consumption in
Eastern
Province (hot

ANN City
Number of
floors
Total built
area—all
floors (sqm)

MSE MSE ≈
0.00542362
(Training) ≈
0.0159995
(Selection) ≈
0.0564305

The model can
be extended to
include factors
not in the
current dataset
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school types)
across Eastern
Province of
Saudi Arabia.

and humid
climate zones),
develop a
prediction
model for
school facilities

Total roof
area (sqm)
Type of
school
Number of
students
Number of
staff
Age of
building
Number of
classrooms
Total air-
conditioned
area (sqm)
AC capacity

(Testing)

Validation
achieved
satisfactory
results: 87.5%
accuracy

Weakest
correlation:
−0.35 between
“type of school”
and “AC
capacity”
Strongest
correlation: 0.95
between
“number of
classrooms” and
“total air-
conditioned
area”

(such as
schools’
orientation in
urban areas)
and be
integrated with
a BIM model

[15]
Was
esa
et al.
(202
2)

Real-life
electricity
consumption
dataset from a
technological
university in
Bandung,
West Java

Enhance
forecasting
accuracy for
microgrid-
based buildings
during COVID-
19 by
incorporating
internet data

ARIMAX
XGBoost
SVR

Temporal
data: day,
date, month
Inerta
variables:
previous
record of
each
variable in
the dataset
(lag feature)
Publicly
available
data:
COVID-19
data from
public
government
website,
Google
Mobility,
and Google
Trends

MAE
MAPE
RMSE

XGBoost 4
model achieved
best MAPE
score (19.6%)
and best MAE
(81.494)

XGBoost
achieved best
RMSE score,
better capturing
electricity
consumption
dynamics that
XGBoost 4

Lagged (inertia
variables)
improve
prediction
(MAPE score of
XGBoost 4
improved from
28.4% to
19.6%)

COVID-19 data
boosted
performance:
MAPE score
increases 21.4%
→ 20.8% for
XGBoost and
43.8% → 22.6%
for ARIMAX
model

Internet-based
data improved
forecasting
accuracy

Consumption
patterns are
somewhat
specific and
limited to the
local context of
the study
during the
COVID-19
period
COVID-19
show
unpredictable
events, so
predictors
needed to be
customized to
context-specific
COVID
policies,
internet data
only partly
represents the
public’s
concern
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[16]
Neb
ojša
Juriš
ević
et al.
(202
1)

Data collected
over five years
(2015-2019)
from 11 public
kindergartens
in Kragujevac,
Serbia

Assess
predictive
models’ ability
to identify key
factors in heat
consumption in
public
kindergarten

SLR
MLR
DT
ANN

Monthly
weather
data:
Heating
Degree
Days
(HDD)

Constant
values
(building
characteristi
cs):
Building
built year
Type of
built
Heating
source
Number of
buildings
Heated floor
area
Heated
building
volume
External
walls gross
surface
External
walls net
surface
(EWNS)
Gross
fenestration
area (GFA)
Ceiling
surface
External
walls
average U-
value
(EWA-U)
Average
fenestration
U-value
(AF-U)
Average
ceiling U-
value
Gross
building
envelope
surface
Net building
envelope
surface
(excluding
fenestration
area)
Roof type
(flat or
pitched)
Number of
building

R²
MAPE

Linear models:
In terms of R²,
SLR model
achieves lower
precision than
MLR model
(0.84 vs 0.89)
MAPE the same
for both (33%)
Low-
consumption
range (<10
MWh/month):
both models had
poor accuracy
High-
consumption
rage (>40
MWh/month):
MLR 11%
better accuracy
than the SLR

Non-linear
models:
ANN
outperformed
DT in both test
and training set
in R² values
(0.96 and 0.92
vs 0.92 and
0.84) and
MAPE (ANN
achieve 10%
better than
accuracy than
DT)
High range:
ANN (MAPE ≈
9%) performed
better than DT
(MAPE ≈ 16%)

Linear models
(SLR, MLR)
are easy to use,
but have
restrictions due
to
multicollinearit
y and low
prediction
accuracy in the
low heat
consumption
range
Downsides of
the ANN
model:
complexity,
making it hard
to interpret and
develop
compared to
linear models
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floors

Survey-
based input:
Area of
windows
used for
classroom
ventilation
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[17]
Cao
et al.
(202
3)

An educational
building in
Xi’an, Shaanxi
province
Dataset
ranging from
October 2021
to December
2021

Propose a
prediction
model that uses
SHAP method
and integrated
learning

RF
XGBoost
SVR
GRU
CNN
LSTM
SHAP-Stacking
CNN-GRU
CNN-LSTM

Time
features,
meteorologi
cal features,
and
historical
data

Original
dataset
contained
16 features;
after feature
analysis,
reduced to 4
features:

Time
Day of the
week
(Sunday to
Saturday)
Total solar
radiation at
the previous
moment
Energy
consumptio
n at the
previous
moment

R²
MAE
MSE
RMSE
MAPE
CV
(Coefficient
of Variance)

SHAP-Stacking
model achieves
best
performance
consistently:
Reduced RMSE
by 13.64%-
34.55% and
MAE by
10.25%-30.54%
RMSE was
13.64% lower
than second-
ranked model,
RF

Hybrid models
CNN-GRU and
CNN-LSTM
improved
performance:
RMSE values
reduced by
4.98% and
8.40%
MAE values
reduced by
4.49% and
6.95%

Limitations are
not explicitly
stated
Implications
and future
direction
include:
improving the
speed of
SHAP-Stacking
model, using
SHAP to better
select base
models

[18]
Muh
amm
ad
Faiq
et al.
(202
3)

Dataset
obtained from
a building in
Multimedia
University,
Malacca
Campus from
January 2018
to July 2021
(during
COVID-19
lockdown
context) in
Malaysia

Evaluate an
LSTM energy
predictor for an
university
campus, and
compare its
performance
against SVR
and GPR
baselines

LSTM
SVR
GPR

Previous
year’s
energy and
forecasted
next day
weather
Pressure
Environmen
al
temperature
Relative
humidity
Wind
velocity
Rainfall
duration &
amount
Type of day
Type of
lockdown

MAE
RMSE

LSTM
outperformed
SVR and GPR:
Proposed LSTM
model achieved
best RMSE
scores
(561.692–592.3
19 kWh)
compared to
SVR
(3135.590–3472
.765 kWh) and
GPR
(1243.307–1334
.919 kWh)

Across 20 ran
simulations,
LSTM reported
best MAE
(165.20) and
second-highest
RMSE (572.55)
Outperformed
SVR (MAE ≈
2851.339 kWh,
RMSE ≈
3270.836 kWh)
and GPR (MAE
≈ 999.880 kWh,
RMSE ≈
1310.105 kWh)

Limitations of
LSTM model
used: requires
huge historical
data and
external
variables
(environmental
or schedule-
related
variables) for
accurate
prediction
Suggests
adding more
features to the
model (such as
occupancy
data) to
enhance
accuracy in
future works

[19] Dataset Develop and CNN-BiLSTM Input MAE Higher demand Supports the
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Ahm
ad et
al.
(202
4)

obtained from
UiTM
Permatang
Pauh campus
building in
Malaysia, 343
days of data
collected at
30-minute
intervals, a
total of 16,464
data points for
analysis

benchmark a
hybrid CNN-
BiLSTM model
for university
campus
buildings

ANN
(benchmarked
against)

Day
Hour
Lagged
previous
week load
consumptio
n
Lagged
previous
day load
consumptio
n
Holiday
Lecture/Non
-Lecture
week

MSE
MAPE
RMSE

and larger
variability for
lecture weeks
(1766.95 kW)
than non-lecture
weeks (1263.95
kW)

CNN-BiLSTM
outperforms
BiLSTM
(MAPE ≈
8.77%) and
ANN (MAPE ≈
13.03%),
reporting lowest
errors and
MAPE ≈ 6.99%

ANN model’s
higher error is
due to the
simpler
algorithm
compared to
more complex
models.
BiLSTM and
ANN models
show under-
forecasting on
weekdays

utilization of
advanced
neural network
architectures
like CNN-
BiLSTM in
achieving more
accurate
forecasts and
optimize
energy resource
allocation

[20]
Shah
id et
al.
(202
3)

Daily
consumption
(multi-year
historic series)
for six public
schools in
Skellefteå
municipality
(Sweden)

Dataset
ranging from
2011 to 2022,
tested on 2022
dataset

Evaluate RNN-
LSTM, CNN,
AE for power
and heating
forecasting in
Swedish
schools

RNN-LSTM
Stacked LSTM-
AE
CNN-LSTM
hybrid,
Hybrid LSTM-
AE-LSTM

Historical
energy
consumptio
n
District
heating
values using
ADD
(Actual
Degree
Days), NDD
(Normal
Degree
Days),
HWDD
(Hot Water
Degree
Days)
Weekday
and daily
temperature
Cyclic time
encodings

RMSE
nRMSE
(normalized
RMSE)

CNN-LSTM
achieved the
best accuracy:
RMSE ≈ 18-
25%
(electricity);
RMSE≈ 20-30%
and nRMSE ~
5% (district
heating)

Models using
only
consumption:
RMSE ≈ 60-
90%
(electricity)
RMSE ≈ 35 -
60% (district
heating)

Average RMSE
of weekdays:
45-70%

CNN are
unsuitable for
capturing long-
term temporal
sequences
(requires
LSTM layers),
plan to develop
an anomaly
detection
method-based
LSTM
architecture in
future works
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[21]
Orte
ga-
Díaz
et al.
(202
5)

Case study of
a classroom in
an educational
building in
Bucaramanga,
Colombia.
Duration: 2.5
months, from
February 19 to
April 30, 2024.
After
resampling/int
erpolation,
complete
dataset
contains
20,435 sample

Compare SVR,
Decision Tree,
and Random
forest for
predicting
classroom AC
energy in a
tropical-climate
classroom

SVR

DT

RFR

22 input
variables
(climatologi
cal,
operational,
and
temporal):
Energy
consumptio
n; Outdoor
temperature;
Outdoor
humidity;
Dew point;
Wind speed;
Wind
direction;
Heat index;
Atmospheri
c pressure;
Rain rate;
Solar
radiation;
UV index;
Cooling
degree days;
Door status;
Windows
status;
Indoor
temperature;
Indoor
humidity;
Motion;
Occupant
number;
Computer
number;
Occupancy;
Day of the
week; Time
of the day;
Working
day

R²

MAE

RMSE

Scenario 4
(March data
only) observed
best MAE,
RMSE, and R²

Best performing
model in
sampling: RFR
(RMSE = 18.05
Wh; MAE =
4.98 Wh; R² =
0.97)

During testing:
highest R² =
0.78, lowest
RMSE = 49.77
Wh, achieved
by SVR model.
Predictive
ability of
models,
especially RFR,
decrease when
evaluated with
new test data

Time-stamping:
1-minute
sampling
improved model
performance.
RFR obtained
an R² of 0.95
(highest of all
combinations)

90:10 train/test
fraction of the
SVR model
provides the
lowest error.
70:30 fraction
has the highest
RMSE. Using
larger training
fractions
improves
pattern learning
of the models

Authors
acknowledged
that 72-day
monitoring
period is
insufficient to
generalize the
results or
develop a high
accuracy model

Suggests more
exhaustive and
prolonged
monitoring to
enhance
accuracy in
interpreting AC
systems; extend
to other
classrooms,
different areas
of buildings, or
even entire
buildings

SOURCE: Research data (2025).

Generalized framework
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FIGURE 02: Flowchart of generalized framework of school energy demand forecasting using ML
techniques.

SOURCE: Research data (2025).

Data and feature patterns
Across the case studies, the energy consumption is most strongly predicted by the following

factors: historical load, weather variables, occupancy levels, as well as other building characteristics such
as floor areas, number of classrooms, AC types, etc.. Historical load consumption and lagged features are
consistently used to forecast future energy consumption in almost every study mentioned, and appear to
be one of the most reliable predictors. For example, in the study by Faiq et al. (2023), it is suggested that
the model use “the previous year's energy data and forecasted weather as the input parameter to forecast
the next day,” as a core input to the LSTM day-ahead forecast [18]. These features are especially crucial
in the study of educational buildings in Bandung, Indonesia in the context of the COVID-19 outbreak, in
which Wasesa et al. (2022) [15] and others tested single-lag versus multi-lag by incorporating two types
of inertia variable sets: variable 1 (xt-1) and variable 2 (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, and
xt−14). The results reported significantly improved prediction accuracy when multi-day lags (1, 2, 3,...,
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14-day history) are included; specifically, the MAPE score of the XGBoost 4 model showed an
improvement from “28.4% of inertia variable 1 to 19.6% of inertia variable 2” [15]. Similarly, using
inertia variable 2 also improves the XGBoost 6 model as the MAPE scores also displays improved
accuracy from “35.8% (inertia variable 1) to 24.9% (inertia variable 2)” [15]. While the overall evidence
supports that lagged historical data are crucial for reliable forecasting, it is important to consider that not
every technique benefits equally from lagged predictors, as seen in the limited gains for SVR models in
the same study.

Besides historical consumption, multiple studies also utilize weather and thermal conditions data,
such as humidity, temperature or irradiance level, as a common input data for energy forecasting. This is
crucial since weather features like rainfall may decrease or increase energy consumption for cooling in
hotter climates [45]. Ortega-Diaz et al. (2025) [21] observed that the humidity level fluctuations
throughout the day demonstrated an “inversely proportional relationship” with the outside temperature,
with that temperature coinciding with AC power consumption in the classroom. Moreover, another
weather data type which is indoor humidity, also displays a negative correlation with the AC consumption
[21], which shows the link between cooling demand and outdoor thermal conditions. Similarly, in study
[18] where LSTM was used to predict consumption in Multimedia University in Malaysia, it was found
that environmental variables such as temperature could “greatly affect the accuracy of the model.”
Specifically, this study tested the importance of each weather variable by removing average pressure,
temperature, humidity, wind speed and rainfall levels, and found that it significantly affected the model’s
performance. By removing average temperature, MAE rises to 212.792 kWh, increasing by
approximately 28.8% as compared to the MAE of 165.2 kWh when said data is included. Removing the
rainfall amount raises MAE to 181.361 kWh, which is roughly 9.8% higher than full model MAE, and
without average temperature and rainfall amount, the model obtained higher RMSE scores around 580
kWh. Overall, this allowed Faiq et al. (2023) to conclude that “temperature, wind speed, rainfall amount
and rainfall duration are important variables in increasing the performance of the model,” and temperature
and rainfall are important parameters for energy forecasting. Most study settings utilize occupancy levels
(occupied/unoccupied) or occupancy signals (number of classes, number of occupants, school holidays
and weekends, timetables, event schedules, etc..) as one of the main input variables for predicting
consumption. Occupancy rate is sometimes reflected using time features (time of day, day of week) [17].
Occupancy significantly influences energy consumption due to the use of electronic equipment, lighting
and air conditioning; in other words, higher occupancy levels correlate with an increased use of resources,
requiring more energy to operate [13,21]. Ahmad et al. (2024) [19] further enforced this as they reported
that lecture weeks consistently saw higher load consumption and more significant fluctuations compared
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to non-lecture weeks, which emphasizes the significant role of occupancy in forecasting energy demand.
In addition, building attributes and features are also crucial variables in energy prediction; as identified by
Mohammed et al. (2021) using a sensitivity analysis, building characteristics such as AC capacity and
building age were the most important factors affecting energy consumption [10].

Data preprocessing and feature engineering

Data cleaning: Outlier detection and Missing value imputation
Building energy forecasting oftenly faces the issue of poor quality data, namely missing values

and outliers due to faults in data collection, transmission and storage and the inherent complexity of
building operations, which necessitates the process of data preprocessing to ensure the validity and
reliability of analysis results [46]. To enhance data quality and improve prediction, studies have widely
employed data cleaning which includes missing value imputations and outliers and noise removals [46].
In building energy prediction, noise, which includes erroneous data values and missing values, implies
data points that do not reflect reality such as ones caused by faulty sensors and transmission equipment
[47]. On the other hand, outliers are primarily determined by statistical methods or non-statistical
methods. In the studies reviewed, two studies that addressed outlier removal both used statistical methods.
In educational buildings energy prediction in Shaanxi, Cao et al. (2023) processed the outlier using the
standard deviation method, or the 3σ method which measures the distance of the factor from the mean
[17]. This method states that if the deviation from the mean value is more than three times, the value of
this point is considered an outlier and therefore eliminated [17]. Similarly, Mohammed et al. (2021) [10]
used a Grubb’s test, a statistical method for detecting outliers in a univariate data set in an approximately
normal distribution, and the highest and lowest values would be considered potential outliers.

Regarding handling missing values, Fan et al. (2021) [46] suggested that there are two ways to
handle missing values in building operational data, the first being simply removing the data samples that
contain missing values, as done in the process of data cleaning of six Swedish schools, in which missing
data and outlier values to simply removed before normalizing the datasets [20]. The second method of
managing missing values involves applying missing values imputation methods to replace those missing
data points with inference ones. Some common methods include mean/median imputation, backward or
forward filling, KNN imputation or regression based imputation [46]. Wasesa et al. (2022) reported
29,513 missing values (4.2% of the total 701,280 data) in electricity data in minute intervals, which
required data imputation using the NOCB (Next Observation Carried Backward) method of backward
filling in which instead of filling the missing value with the last observation, it fills it with the next
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observed, non-missing value [15]. Cao et al. (2023) deployed linear interpolation, which is the method of
curve fitting using linear polynomials to construct new data points within the data range, to estimate the
missing value according to two adjacent data points to be interpolated in the sequence [17].

Feature selection
It is critical to note that while adding more input variables can improve prediction in some cases,

the more features entered does not necessarily result in higher accuracy; rather, the degree of influence of
each feature on the consumption is what is helpful in targeting energy efficiency [17]. In fact, Cao et al.
(2023) reported that the model’s prediction accuracy “decreases with the increase of number of features,”
which led the authors to eliminate weaker predictors and enhance performance by limiting their optimal
dataset to time, total solar radiation, historical consumption and day of the week. In the context of
building load prediction specifically, feature importance analysis to retain relevant and most influential
features while discarding redundant or irrelevant features, preventing risks of overfitting, poor
generalization capability, reliance on noise, and overall improving the model’s performance [48].

To determine the significance or “weight” of specific features within the model, multiple studies
reviewed employed powerful feature importance analyses. Some commonly used feature selection
techniques include the use of Pearson’s correlation analysis which was deployed in the research (Shahid
et al., 2023a) in order to determine how strongly variables (such as different date time parameters, energy
consumption, and actual degree day) are associated with heating energy use before incorporating them in
predictive models [20]. The MI-based feature selection, which evaluates each feature and yields a
relevant feature subset, is also commonly used as it can handle data with both categorical and numerical
variables. Notably, the SHapley Additive exPlanation (SHAP), an explanation model that determines the
credit and impact of an input feature to a model’s output prediction accuracy, has been commonly
deployed in multiple studies to evaluate the positive or negative impact a variable has on the model which
leads to changes in the SHAP value [49]. In [18], the authors deployed this method by removing
individual environmental variables across repeated simulations to test the impact on accuracy, and
reported that excluding temperature or rainfall significantly worsened performance, which allowed the
conclusion that those variables were among the strongest parameters. Similarly, Cao et al.’s study also
deployed the SHAP model for feature importance analysis [17], and results showed that the SHAP-
Stacking model shows the “best results in the calculation of each evaluation metric.” Specifically, the
SHAP-Stacking model was the best performing in eight models, having significant reductions from
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34.55% to 13.64% in RMSE and 10.25% to 30.54% reduction in MAE, indicating that by adopting
feature importance analysis techniques, the researchers were able to obtain more accurate predictions.

Data normalization and scaling
Data normalization is the process of rescaling features to a standardized scale, which ensures that

each variable contributes equally and prevents any feature that simply has a larger magnitude from
disproportionately dominating the analysis [50,51]. Data normalization is critical in the data preparation
process as it mitigates the impacts of scale variations of features in the raw input data and ensures that
each feature contributes effectively to the analysis [52]. Normalization improves prediction accuracy as
well as the model’s convergence speed [17]. Commonly assessed normalization approaches in energy
consumption prediction include Min-Max Scaling, Mean, Z-score, IQR and VSS methods. Among the
case studies reviewed, most common normalization approaches are Min-max normalization and Z-score
normalization.

In particular, Cao et al. (2023) utilized the Min-max scaling approach, a method that rescales
features with differing values to a standardized range, typically between 0 and 1 [17]. This method was
also adopted by Wasesa et al. (2022) in their study of Indonesian educational buildings to normalize data
for both the predictor and the target variables [15]. The specific formula of this scaling approach is as
follows, in which x is the raw data retrieved, x scaled is the normalized data between a specific range,
xmin is the minimum value from the raw data, and xmax is the maximum value from the raw data.

xscaled =  x - xmin
xmax -  xmin

[1]

Similarly, in their study of energy prediction in school buildings, Alshabani (2020) used the
Minitab software to automatically scale numeric factors, using the minimum, maximum, mean and
standard deviation and reported a good level of accuracy. In the software, the categorical data were
transformed into numerical data; specifically, the city factor was encoded numerically on a 1 to 7 and the
types of schools on a 1 to 4 scale, and both were defined as categorical variables [14].

Another popular standardization technique is Z-score normalization. Ortega-Diaz et al. (2025)
[21], for instance, decided to use StandardScaler to normalize data points from sampled Colombian
schools via finding the z-value which measures how far a value x is from the mean of a data set. By
calculating the Z-score, observed data points are transformed to change the observed values to have
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characteristics of a standard normal distribution in which the mean is 0, and the standard deviation is 1.
The transformed data is equally distributed above and below the mean value, which makes the variance
equal to one [53]. This method follows the following formula:

xstandardized =  x - μ
𝜎

[2]
Where μ is mean and 𝜎 is standard deviation.

Model training, data splitting, tuning and validation

Data splitting
The model training process in educational buildings energy forecasting involves feeding historical

school-specific data into chosen machine learning algorithms which then can learn the patterns and
uncover the relationship between input variables and energy consumption, gradually adjusting their
internal parameters to minimize errors and improve prediction accuracy. Typically, model training
involves the following main stages: a training phase where the chosen algorithm learns patterns from
input data, a validation phase where performance is assessed using evaluation metrics, and
hyperparameters are tuned; and a testing phase where the model is tested on unseen data to measure its
generalization ability beyond the specific study setting.

Arlot, S., & Celisse, A. (2010) emphasize that, since real-world datasets are limited, data splitting
is essential to mitigate overfitting, or the case where the model performs well on training data but
performs poorly on unseen data [54]. Data splitting involves allocating a portion of the data for training,
and the remaining portion for testing and validation. One of the most common and simplest data
partitioning techniques is the holdout method, which involves randomly holding out the test dataset from
the training process while the rest is reserved for testing [55]. Generally, although the exact proportions
may differ, a large portion of roughly 70-80% of the data is allocated to the training phase, though this
share can increase to as much as 95% when larger datasets are available [55]. In fact, among the case
studies reviewed, multiple studies utilized this holdout validation as their data splitting method due to its
simplicity. For instance, Orgeta-Diaz et al (2025) experimented with different split proportions of 50:50,
60:40, 70:30, 80:20, 90:10, and found that the 80:20 and 90:10 ratios yielded the lowest RMSE values
across models, while the 70:30 fraction performed worst, indicating that a larger training set generally
yields better accuracy [21]. In the study by Faiq et al. (2023) [18] in Malaysia applying CNN-BiLSTM
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models, 70% of the dataset was used for training while the remaining 30% was used for testing, while
another study in Malaysia by Ahmad et al. (2024) [19] selected a 85-15 split. Similar approaches were
chosen in Saudi Arabian researches: Mohammed et al.’s study trained a regression model with 316 data
points while holding out 35 (11%) for validation [10], and Alshabani et al.’s study partitioned data into
60% for training, 20% for selection, and 20% for testing [14]. Such findings demonstrate the flexibility of
the holdout method as the proportions can be adjusted differently from study to study based on available
data and model evaluation needs. While this approach is simple, it is generally suitable for larger datasets
with years of measured data, and may not reflect the patterns reliably for smaller datasets [55].
Additionally, the nature of school energy presents unique challenges such as being limited in duration,
and relying on a single split may lead to inefficient use of scarce data while also making models highly
sensitive to that specific split, worsening the model’s ability to generalize.

Hyperparameter Optimization
Hyperparameters,such as number of hidden layers, neurons per layer, or learning rates, unlike

parameters which are learned during the training, are set by the user prior to the training process.
Hyperparameters optimization (HPO) is the process of selecting and tuning the parameters of the
forecasting algorithms to the best configuration possible [56]. The accuracy of an energy prediction
model is dependent on the configuration of its hyperparameters [57], playing an important role in the
forecasting accuracy [56]. The most commonly used HPO methods include Grid search, Random search,
Bayesian optimization, heuristic optimization, more advanced evolutionary algorithms, etc..

Random search involves training and testing the model based on random combinations of the
numeric, integer, or categorical hyperparameters [58], and according to Hossain et al. (2021) [57], this
method could better identify new combinations of the parameters or better discover new hyperparameters
in order to improve the optimization, leading to improved performance thought taking more time.
Random search typically has much better performance than grid search in higher-dimensional HPO
settings despite being computationally costly [58].

Another widely used HPO approach is grid search, which involves the user setting a fixed grid of
hyperparameters and the model is trained exhaustively based on every possible combination within that
grid [57]. In the study of Indonesian educational buildings [15], this grid search approach was applied
across several algorithms. For the XGBoost models, Wasesa et al. (2022) optimized six parameters:
maximum depth, learning rate, minimum child weight, objective, sub sample and tree method. For SVR
models, they optimized four parameters: C, gamm, kernel and epsilon. Similarly, the optimization for
ARIMAX models in this study considered AR, I and MA [15], which demonstrates the ability of grid
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search to handle multiple different model types for linear ARIMA models to boost algorithms. However,
the author also stated that the training time varied considerably with XGBoost taking the longest runtime,
acknowledging the common limitation of grid search of being computationally expensive for exhaustive
evaluation.

Bayesian Optimization (BO), an automated tuning method, is becoming widely used due to its
ability to find the optimal hyperparameters in fewer steps and higher efficiency than grid-based methods
[57]. Bayesian Optimization models the mapping between hyperparameters and past performance [62],
essentially creating a surrogate model using Gaussian process or a random forest [58], allowing the
optimizer to focus its search on the most promising regions of the hyperparameter space [59,60]. This
approach of creating a surrogate model could be effective for handling hybrid models such as CNN-
BiLSTM used for education buildings load forecasting, because training those networks is
computationally heavy and the hyperparameter space is large. In [19], the authors utilized the Bayesian
optimization algorithm to facilitate the identification of the best hyperparameter values and therefore
enhancing the performance of the CNN-BiLSTM model. Specifically, they include the unique layering
strategy of CNN as the foundational layer with 128 filters and four kernel sizes; followed by seven
additional BiLSTM layers. The BiLSTM was configured with 180, 80, 80, 50, 10, 15, and 1 neurons
across its layers, while the ANN block contained eight layers with neuron counts of 100, 100, 80, 120,
100, 30, 90, and 1. They emphasized that they were able to obtain the best hyperparameter values using
Bayesian optimization and ultimately achieve improved accuracy with less errors. Overall, Wasesa et al.
(2022) noted that facilitating optimal hyperparameters values using BO algorithm led to enhanced
performance and efficiency of the CNN-BiLSTM mode [15].

Evolutionary algorithms stimulate natural evolutionary processes of genetic improvements in
humans or animals to solve optimization problems [61]. In simple words, this approach is based on the
concept that when individuals of a population compete for scarce resources, only the fittest individuals
could survive [63]. This mutation process of selecting fittest value could be applied to optimization where
evolutionary algorithms are used for hyperparameter tuning. In the study of Serbian schools [16], a
Genetic Algorithm was used to develop an Evolutionary Assembled Artificial Neural Network (EANNN)
which was utilized for heat consumption forecasting in kindergartens to configure optimal ANN
parameters, which include: the number of neurons in a hidden layer, the type of activation functions in the
layers, the number of learning epochs, learning rate, and momentum. According to Nebojša Jurišević et
al. (2021), the optimization using GA involves automatically and iteratively configuring and evaluating
the ANN performances, improving performance via essentially updating the populations of candidate
solutions until convergence [16].
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Apart from the common optimization approaches reviewed above, heuristic and manual tuning
approaches are evident in several case studies. For example, for their NN model, Alshabani (2020) [14]
employed incremental and stepwise optimization rather than exhaustive searches in order to figure out the
optimal number of hidden neurons. According to Alshabani, the algorithm for order selection was
“incremental order” which involves beginning with the minimum number of neurons (order), gradually
increasing with a certain number of perceptions in each iteration, and finally selecting the optimal order
with the lowest selection lost; the final result was an ANN with three hidden neurons. The authors also
note that in a complex model like such in the study, the error of selection increased with the number of
neurons. Other studies, though not explicitly stated by the authors, relied on manual adjustment combined
with early stopping to manage overfitting. Importantly, Begić Juričić and Krstić (2024) also stated that
after 10 consecutive epochs, the training is stopped if there was no improvement in validation loss, and
the training is stopped at 100 epochs to avoid excessive computation [13]. Such approaches demonstrate
how incremental or early stopping criterias can be effective compared to other search methods, especially
in resource-limited contexts.

Evaluation, Validation and Cross Validation
The evaluation of these ML-based models relies on quantitative evaluation metrics that measure

the difference between the predicted and the actual consumption values, evaluating whether the model’s
performance was satisfactory or not. Some common evaluation analysis that measure the performance’s
error include: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE) and the Mean Absolute Percentage Error (MAPE); the lower these metrics are, the better the
model has performed [9]. MAE, which measures the average magnitude of prediction errors, is less
sensitive to outliers, meaning it is suitable for noisy data sets, whereas Root Mean Squared Error (RMSE)
is also commonly used as it penalizes larger deviations more strongly [64]. Other metrics such as R²
indicates model fit (the higher the R², the better the model performance is) or MSE, which is common for
optimization tasks but less interpretable than other metrics [64].

Cross-validation (CV) is a resampling procedure that improves the reliability of ML models by
ensuring that the performance is evaluated across multiple partitions of the dataset. By randomly shuffling
the data into diverse subsets of train and test sets, in which each contains a representative sample of the
data [55], it mitigates the risks of obtaining biased results from relying on a single train-test split.
According to Hasanov et al. (2022), one of the most widely used CV approaches is k-fold cross-validation
where the dataset is repeatedly split into k folds, or subsets, to be trained on k-1 folds and tested
repeatedly, and results are then averaged [55]. This method not only reduces variance and improves
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generalization ability, but for school settings which usually have scarce datasets, k-fold CV could
effectively maximize the amount of data available by allowing each data point to be used for both training
and validation which provides a more robust and generalizable estimate of model’s performance [65].
Several studies in the educational energy forecasting literature have applied k-fold CV to strengthen their
model, such as Run et al. (2023) [9] who assessed model performance using 10-fold CV. Similarly,
Muhammad Faiq et al. (2023) applied a 5-fold CV combination with a grid search to tune the
hyperparameters of a SVR model. Ortega-Diaz et al. (2025) study in Colombia slightly differs in the way
it initially splitted the data into an 80:20 training-testing split but also applied k-fold CV within only the
training set. The authors identified that, due to the limited data available, the four-fold (k ≈ 4) cross
validation allowed them to best maintain low computational cost while achieving a balance between bias
and variance [21]. Chung and Yeung (2020) [11] applied Leave-One-Out Cross-Validation (LOOCV),
which is another CV technique that is effective when datasets are small. In their study, Chung et al. used
LOOCV to check for overfitting in stepwise BS models by comparing training errors with LOOCV sum
of squared errors, and found that they were similar which indicated no serious overfitting. While LOOCV
could offer enhanced accuracy for specific models compared to k-fold CV, which could be beneficial for
some school settings studies with limited data, it requires greater computational resources [66].

A large portion of case studies on energy forecasting in educational buildings rely on sequential
time series data such as historical electricity load, occupancy schedules, lagged loads, or weather
variables in which the latter observations are dependent on the previous patterns. Because of this, in such
cases, the common k-folds CV which assumes data points are independent of each other and allows
random reshuffling, cannot be applicable as randomly splitting these time-dependent sequences could risk
data leakage, or future information leaking into the training set [55]. Instead, time series require CV
approaches that preserve the chronological order of data by training the model on past observations and
validating it on the future observations while still ensuring multiple rounds of training and validation. One
of the most commonly used time-aware approaches is the rolling window method where the dataset is
divided into subsets and the training set is gradually expanded and tested on subsequent folds of the data,
which ensures that the model is always trained on past observations and evaluated on future ones. Among
the case studies, this method could be seen in research by Shahid et al. (2023) which used 3-8 years of
historical data of sampled Swedish school buildings for training and 2022’s data as the testing set. Wasesa
et al.’s study, which also depends on time series data, used the dataset from 1 March 2020 to 30 April
2021 for training, the dataset from 1 May 2021 to 31 May 2021 for validation, and data from 1 June 2021
until 30 June 2021 to test for accuracy scores [15]. It is important to note, however, that while time-aware
CV methods are essential for sequential datatasets, many case studies reviewed in this paper, including
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ones that have time-dependent input variables, do not explicitly state in their methodology whether the
chronological nature of data is preserved in the validation process. In energy forecasting studies of school
settings, it is crucial to address whether the temporal dependencies were accounted for, as that may raise
concerns about potential biases in the models’ performances.

Discussion of common models
This section will discuss some of the most commonly employed ML approaches and most

outstanding models from different model families for school load forecasting in recent years, spanning
from traditional linear regression models and neural networks such as ANN, to advanced architectures
like XGBoost or hybrid deep learning techniques. When assessing and comparing each approach,
multiple factors including applicability, data availability, computational capacity and resource constraints
are taken into account. Overall, through providing an overview of each model, summarizing their
strengths and weaknesses, and examining their performance as reported in recent empirical studies of
real-world school settings, this discussion section aims to inform school administrators in selecting a
suitable energy management model for their own schools.

Multiple Linear Regression (MLR)
In recent years, linear techniques have been popularly utilized for load forecasting, especially

load forecasting in school settings. Linear regression analysis, which uses the independent variable to
predict the independent variable, estimates the coefficients of the linear equation that best predicts the
independent value by fitting a straight line that minimizes discrepancies between predicted and actual
values [22]. In this section, the paper will discuss one of the most common linear techniques used in
school energy prediction: Multiple Linear Regression (MLR).

Despite the emergence of numerous comprehensive techniques, statistical and hybrid methods,
linear techniques remain a popular and suitable choice in school energy forecasting, especially serving as
a method of preliminary energy assessment. Across current literature, those complex methods are
reported as requiring specialised softwares, user expertise as well as a model calibration; on the other
hand, linear regression analysis techniques overcome such difficulties by providing a reliable alternative
for unskilled users or resource-limited settings [23]. Namely, MLR method, which incorporates multiple
explanatory features, does not require calculation tools such as personal computers or software programs
[23], making it one of the most simple, low-cost, and interpretable prediction methods. In the context of
school energy forecasting, typical applications include benchmarking annual consumption across
institutions, short-term load prediction using climatic variables and operational schedules, or being used
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as baseline in school building energy prediction against other techniques. Several studies have reported
moderate accuracy in MLR performances. Specifically, in their study across schools in Fiji, Prasad et al.
[12] reported moderate accuracy in MLR model (8c) with an R² ≈ 73.3% and an RMSE ≈ 0.2248. MLR
models usually surpass Simple Linear Regression (SLR) techniques, as Nebojša Jurišević et al. (2021)
reported SLR model achieving lower precision than MLR model (R² ≈ 0.84 vs R² ≈ 0.89) [16]. Juričić &
Krstić’s study [13] which had a large multi-building dataset (149 schools) also reported MLR model’s
achieving good performance of R² values of 0.950 and 0.949 for the training and validation sets,
respectively; ANN models used in the same study achieved only modest improved accuracy of R² ≈
0.957, indicating that with a larger cross-sectional dataset of school districts with multiple schools, MLR
can be competitive in its accuracy and predictability.

Despite being low-computational and interpretable, the MLR method has major limitations, the
first clear drawback being its inability to model non-linear relationships between independent and
dependent variables [12]. This is crucial when considering the context of load forecasting in schools:
school energy use is often influenced by non-linear effects such as temperature thresholds, occupancy
levels, or user behaviors, which linear regression alone cannot capture. Secondly, linear methods like
MLR face the issue of multicollinearity among independent variables, restricting some variables that
could influence the output to be utilized; for example, regarding influential but non-linear variables as
non-significant [16]. Thirdly, linear fits can underestimate high loads, exhibiting poor performance at
extreme high or low consumption ranges, as results in study by Nebojša Jurišević et al. (2021) indicate
both the MLR and SLR models achieved low accuracy in the high and low-consumption range, though
MLR did exceeded SLR’s accuracy by 11% in the high range [16]. Similarly, study by Run et al. [9] of
schools in France which used two MLR models: first order and two-way interaction models also showed
that even though the two-way interaction model did improve in accuracy for both training (R² ≈ 74%) and
testing set (R² ≈ 77%) compared to one-way model, it still underestimates results for higher loads (≥
30kWh/hour). Moreover, results of the same study also suggest high variability in performances across
different buildings, with the model’s best performance being GMP building (R² ≈76%, MAPE≈22%), GC
moderate (R²≈64%, MAPE≈26%), and performed unacceptably poorly on GEII building (R²≈55%,
MAPE≈69%) , demonstrating MLR’s sensitivity to building heterogeneity. For this reason, Run et al.
(2020) deemed MLR as mainly a preliminary model that resolves immediate energy management needs.
Similarly, Jurišević et al. [16] also suggested that in low heat consumption, linear methods achieve
relatively low prediction, suggesting that when school energy demand falls into a lower range (e.g.,
summer break), regressions forecasts are less reliable.
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In short, linear regression techniques such as MLR are especially helpful as baseline models in
school energy forecasting due to their low computational demand, interpretability and modest data
requirements; such characteristics are especially useful when considering an energy management solution
for schools with limited IT resources or schools where complete metered datasets or complex computing
softwares are unavailable, allowing even unskilled school administrators to gain not highly accurate but
still helpful insights on their school’s energy demand. Nevertheless, compared to other models, linear
regression methods usually achieve much lower accuracy, and such techniques are not to replace a
dynamic simulation model; rather, they provide a simple tool for determining energy needs [23] that is
applicable to most resource-limited schools. Rather than the final forecasting solution, these techniques
often serve as a preliminary model [9], or a benchmarking model, like in the study by Begić Juričić and
Krstić (2024), ANN models were benchmarked against MLR which effectively served as a simple and
transparent baseline that more advanced models can utilize to improve upon [13].

Artificial Neural Networks (ANN)
Neural networks are computational architectures that follow the way neuronal structurals of brains

process information [24], composed of layers of interconnected nodes called neurons where each
connection carries a weight and each neuron applies an activation function and bias term to determine the
output [25]. Thus, the layered architecture allows such models to capture complex and non-linear
relationships [24], making them very suitable for energy forecasting in schools where relationships within
data are oftenly non-linear. Among neural network techniques, Artificial Neural Networks (ANN) are
among the most widely used Machine Learning models for load forecasting in schools. ANNs are
typically split into an input layer which receives predictor variables; one or multiple hidden layers
depending on the complexity of the task, which transform data through weighted connections; and an
output layer that produces the final prediction [25]. Notably, in forecasting tasks, ANNs are commonly
implemented as feedforward networks where data flows in the forward direction [25], fitting for school
forecasting where many data variables are sequential and time-dependent.

There are numerous advantages to using ANNs in school energy prediction, one of which is that
the multilayered structure enable that to model highly non-linear and complex relationships between data
that some traditional regression approaches fail to capture [24], which allow them to align with the
complex dynamics of school building energy systems. ANN models are flexible and able to integrate vast
amounts of data [25] from multiple sensors, weather inputs, and occupancy data, which could effectively
support energy management and scheduling. Moreover, according to Runge, J., & Zmeureanu, R. (2019),
ANNs have the ability to learn data directly without deep understanding of the physical system or
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complex programing [25]; rather, they automatically adjust their internal weights during training and
flexibly adapt to different contexts and robustness accordingly [25,27]. Multiple studies using ANNs for
handling diverse and irregular load patterns show better predictive performances compared to those of
time-series and regression-based models, reporting that they do not only achieve higher accuracy but
might also require fewer computational resources than other approaches in some cases [26]. For instance,
in the study of Serbian schools, Nebojša Jurišević et al. (2021) [16] applied ANN to hourly consumption
data from multiple kindergartens which saw significant gains compared to Decision Tree and surpasses
all other models in terms of accuracy in all consumption ranges: achieving high accuracy of R²≈0.96
(training) and R²≈0.92 (testing). Most importantly, ANNs maintained its accuracy in across different
consumption ranges: in the higher range, the models achieved MAPE value of just 9% compared to that
of DT with 16%; in the low and medium consumption range, the MAPE value were 28% vs. 16%, and
24% vs. 12% for ANN and DT, respectively, demonstrating ANN’s ability to handle irregular load
patterns typical of schools while maintaining accuracy across various consumption ranges. Similarly,
Begić Juričić and Krstić (2024) [13] trained an ANN model configured with a 3-5-1 architecture and also
achieved significantly highly accurate performance of R²≈0.957 (training) and R²≈0.954 (validation) [13]
with RMSE values of 3024.25 and 3415.75, respectively, outperforming multiple linear regression (MLR)
benchmarks and generalize “reasonably well to unseen data.”

On the other hand, ANN models also have a few limitations. The most major one, according to
Runge, J., & Zmeureanu, R. (2019), is limited generalization outside of their training set [67], meaning
ANN models trained on season or context-specific data may not always transfer well to other conditions
(e.g., model trained in summer failing in winter), which requires continuous retraining strategies to
maintain accuracy that can be computationally intensive [25]. This limitation is also acknowledged the
study by Begić Juričić and Krstić (2024) where the authors noted that since the models are trained on a
single country dataset specific to that setting, their generalizability to “other regions with different
climatic conditions and building practices are limited” [13]. Compared to other models such as CNN-
BiLSTM hybrids in the study by Ahmad et al. (2024), standard ANN models were found to under-
forecast weekday peak loads due to the simpler algorithm compared to more complex models, while
CNN-BiLSTM hybrids reduced the error rates in nearly half [19]. In [19], ANN was mainly used as a
baseline model for more complex models that are suitable for complex load dynamics such as CNN-
BiLSTM and LSTM to be benchmarked against. Moreover, ANNs also suffer from overfitting that stems
from learning too closely from training data thereby capturing noise rather than generalizable patterns,
which reduces accuracy, especially for long-horizon predictions [25]. Study by Prasad (2024) highlighted
this risk as they emphasized how ANN models’ performance were sensitive to the number of parameters,
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available data points and missing values as the models improved significantly and yielding higher RMSE
values for modeling with 75 data points than compared to 100 data points [12]; this shows how smaller,
incomplete school datasets with missing variables require more caution in implementing ANNs.

Developing and implementing effective ANN architectures for school load forecasting still
requires high expertise and careful hyperparameter tuning [25] to ensure high performance. In the study
in Serbia, feature selection and hyperparameter configuration using a genetic algorithm called
Evolutionary Assembled Artificial Neural Network for optimization required 50 generations and 200
population size [16]. This development of the EAANN model for configuration required the MATLAB
software, which again underlines the computational cost of robust ANN development. In the Croatian
study, ANN training relied on early stopping and fixed epochs to avoid excessive computation [13].
When schools are considering energy management solutions, computational costs and expertise
requirements are crucial factors to be mindful of, and accordingly, schools with limited technical
resources may struggle to implement and maintain ANN systems. Finally, due to the “black-box” nature
of ANNs, they are often difficult to interpret and develop [12,16], which makes interpreting more difficult
and reduces transparency for decision-makers in school, especially ones without much expertise in the
field. Overall, ANNs are most suitable for schools with moderate or large but well-structured and
complete datasets, the resource capability for hyperparameter optimization, and a need to capture non-
linear energy demand behaviors.

Extreme Gradient Boosting (XGBoost)
Ensemble learning is a family of ML techniques that combine multiple diverse base learners to

each high predictive performance, as when those models are put together, they can compensate for each
other’s errors, thereby reducing the bias and reliance as well as producing more robust predictions
[29,30,31] that cannot be achieved by any learning algorithm alone. Ensemble learning approaches are
usually divided into bagging where the model learns independently in parallel, and boosting, where
models are trained sequentially so that the following model corrects the individual errors of the previous
one, thereby iteratively reducing bias and improving performance [33].

For the purposes of this paper, this section will discuss XGBoost (Extreme Gradient Boosting), an
emerging technique that is gaining popularity in load forecasting tasks for its superiority compared to
traditional gradient boosting methods due to its robustness and high predictive ability. More specifically,
XGBoost’s improved performance can be attributed to additional optimizations in computational
efficiency, such as incorporating algorithm for finding optimal splits in the tree [29], which allowed faster
training time; and the incorporation of a regularization term in the loss function that allows an increased
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ability in handling missing values [33] and most notably, significantly prevents overfitting, an issue
prominent in boosting-based methods that learn too closely on noisy samples [29,31]. For those reasons,
the XGBoost algorithm minimizes the need for feature engineering, including data normalization and data
scaling [31]. Moreover, according to Moon et al. (2024), robust XGBoost models are especially effective
for large, high-dimensional datasets and complex modeling tasks [29], which renders them especially
effective and scalable for capturing complex, non-linear relationships of large, complex school datasets
that are dependent on various drivers (weather, occupancy, schedules). This could be shown in the study
by Wasesa et al. (2022) on technological university buildings in Bandung in the context of COVID-19,
where XGBoost models consistently outperform the other two models used in the study, SVR and
ARIMAX, and achieved the best predictive accuracy across multiple experimental settings. Namely, the
XGBoost-3 model achieved the lowest MAPE value of 11.9% while ARIMAX and SVR reported MAPE
values of 13.5% and 12.5% [15], as well as minimized absolute errors with the lowest MAE value of 23.9
compared to ARIMAX (32.3) and SVR (25.) [15] despite having a larger, more complex set of predictors.
The study also highlights XGBoost models’ strength in handling multiple predictors and non-linear
relationships as the author notes that by including a combination of temporal lags, electricity
consumption, COVID-19 data, Google mobility trends as predictors, the XGBoost-8 model saw a
significant improvement in its RMSE. Thus, such findings emphasize XGBoost’s ability to handle
complex, high-dimensional inputs while maintaining accuracy and proves it suitable for forecasting tasks
in school settings with large datasets with many predictors.

On the other hand, despite the advantages, XGBoost models also face several limitations that are
crucial to be taken into account when considering school energy demand forecasting applications, one of
which is their tendency to overfit when hyperparameters are not carefully tuned, causing the performance
to potentially decrease when inputs are highly irregular [29,34]. Unlike simpler models, XGBoost often
requires intensive hyperparameter optimization of multiple interacting hyperparameters such as learning
rate or maximum depth. In the study by Wasesa et al. (2022), the authors noted that their XGBoost
models had to be optimized using a hyperparameter grid search that optimized maximum depth, learning
rate, minimum child weight, objective, subsample, and tree method. Even though XGBoost achieved
superior accuracy with the best model achieving significantly low error (MAPE = 19.6%, MAE =
81.494), it also came at the cost of significantly higher training time and computational resources
compared to SVR and ARIMAX models used in the same study.Moreover, the model is also highly
sensitive to sample size and input dimension, as Si et al. (2024) stating that “blindly increasing the input
dimension” will increase the difficulty of capturing important interactions [35]. Overall, such findings
suggest that XGBoost not only requires large, structured datasets but also careful hyperparameter tuning
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to prevent overfitting, which is computationally demanding and requires specialized techniques [34],
making the development process more difficult and resource-intensive compared to simpler models.
When these factors are taken into account, XGBoost techniques become less suitable for schools with
large and irregular datasets, as well as schools with limited computational resources and expertise for
intensive hyperparameter tuning.

Long short-term memory (LSTM) and hybrid LSTM architectures
In recent years, deep learning approaches such as CNNs and LSTMs have gained significant

attention in the field of load forecasting for school settings with multiple schools implementing those
methods. Long Short-Term Memory (LSTM) networks are a specialized form of recurrent neural
networks (RNN) which solves the vanishing and exploding gradient issues that occur within conventional
RNNs [36]. The architecture includes memory cells regulated by the input gate, output gate, and forget
gate [39], which manage the memorization, passing and discard of information [38], allowing LSTM
models to preserve long-range temporal dependencies while handling non-linear data of complex,
dynamic relationships in energy consumption data [36,39]. LSTM models are also shown to consistently
outperform traditional RNNs and linear approaches in capturing long-term dependencies [39].
Muhammad Faiq et al. (2023) [18] applied LSTM models to forecasting a Malaysian university campus
and reported that the model outperformed both SVR and GPR across 20 simulations run as well as
achieved a low MAE value of 165.20 kWh and a RMSE of 572.55 kWh, compared to SVR (MAE
2851.34 kWh, RMSE 3270.84 kWh) and GPR (MAE 999.88 kWh, RMSE 1310.11 kWh), demonstrating
the model’s ability to effectively extracting long-term and nonlinear temporal dependencies in education
building settings. Due to their ability to retain important historical information while removing irrelevant
data, LSTM models are also highly effective for capturing patterns within sequential data, making them
suitable for energy forecasting tasks in schools with large historical datasets that encompasses multiple
variables (such as average pressure, temperature, humidity, rainfall, etc., [19]) or time-dependent data.

However, despite their strong efficacy in time-series forecasting, LSTM, as standalone models,
still face several limitations that undermine their practicality in load forecasting for school settings. The
first major limitation comes from the fact that LSTM models’ complex architecture, which is built around
multiple gates and memory cells [37], makes them highly computationally intensive while requiring
increased training time and increased memory consumption [37], especially when the number of layers
and hidden state size rise [38]. Moreover, LSTMs are also highly sensitive to hyperparameter selection,
and performance often strongly depends on the choices of the number of layers, hidden units, batch size,
and learning rate [35,37] which greatly affect the training stability; however, fine-tuning those
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hyperparameters often requires extensive trial and error as well as ML expertise. LSTM models are also
vulnerable to overfitting risks [37], especially when data are sparse or noisy, which is a common situation
in school energy data where historical, high-resolution datasets may be limited. They also present
interpretability issues [37] due to their black-box nature, which may complicate explanation among
school administrators who need transparency for effective decision making. In [19], Muhammad Faiq et
al. (2023) also emphasized the fact that LSTM requires huge historical data to make accurate predictions,
and also depends greatly on external features such as schedule and weather information to achieve
optimal accuracy, showing that LSTM is especially vulnerable to limited data. Overall, when considering
LSTM models for school energy management, such constraints mentioned above should be taken into
account as schools with limited computational resources or expertise in the implementation and
interpretation of LSTM models, schools with sparse historical data that are incomplete without external
features, or schools without the budget for intensive hyperparameter tuning might be unfit for this model.

Another drawback of LSTM comes from their difficulty in handling very long sequences, because
even though single LSTMs were designed to address gradient issues in conventional RNNs, studies
[37,39] emphasize that they still struggle to handle extremely lengthy input sequences and may lose some
key information when processing such sequences; they may only perform well on specific types of load
data and perform poorly on others due to their fixed structures [39]. This motivates researchers to often
adopt hybrid methods combining different algorithms (e.g., CNN-LSTM, RNN-LSTM, etc.,) that
complement or preprocess the data to reduce errors presented in individual models in order to improve
accuracy and robustness [39].

Hybrid LSTM architectures have become increasingly popular among researchers and building
administrators in overcoming weaknesses of standalone LSTM models, particularly in complex
forecasting tasks such as school energy demand forecasting. Hybrid LSTM architectures combine the
LSTM models with other algorithms that excel at complementary tasks while preserving LSTM’s core
advantage of modeling temporal dependencies, thus addressing the limitations of single LSTMs in
handling complex data patterns [38,39,40]. For example, CNN models have the outstanding ability to
effectively extract local patterns, fluctuations [41], and spatial information, so when combined with
LSTM’s long-term modeling capabilities, the CNN-LSTM technique is able to capture both daily trends
and sharp variations in energy consumption, thereby utilizing each model’s strengths as well as overcome
individual limitations to improve prediction accuracy [42]. Shahid et al. (2023) also emphasized this
operational robustness in handling fluctuations as they stated that the CNN-LSTM values are “very
narrow to the actual load values” [20]. Cao et al. (2023) [17] also reported in their study that by adding
convolutional preprocessing, the CNN-LSTM model reduced RMSE by 8.40% and MAE by 6.95%
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relative to LSTM without convolution, showing the benefits of incorporating the strengths of CNN in
extracting and reducing errors in school energy prediction. Load data of schools usually contains both
complex temporal and non-temporals patterns that single LSTMs might struggle to fully capture [44], but
hybrid approaches could effectively model complex non-linear relationships [40,42], allowing the system
to adapt to dynamic environmental and behavioral variables such as weather, occupancy, or seasonal
variations that drive school energy use. Incorporating the strengths of another model such as CNNs,
RNNs, or even fuzzy logic and gradient boosting models [40] in the preprocessing or feature-extraction
stage before the LSTM allows hybrid models to filter redundant information, learn complex data patterns
and improve temporal feature extraction [40] in order to improve consistency as well as generalizability
across various settings [43]. Multiple studies [35,39] have consistently reported that hybrid LSTMs, by
filtering noise and outliers to reduce biases, outperform other single LSTM techniques in terms of
accuracy [40], achieving lower MAPE and RMSE values in both short and long-term forecasting tasks
[41,43]. In real-world school datasets, such as one of electricity demand in six Swedish schools [20],
CNN-LSTM was reported to achieve good accuracy with RMSE and nRMSE of roughly 18% to 25% and
5% to 6% respectively, and that weekday RMSEs feels from ≈45%–70% to ≈19%–24% after CNN-
LSTM tuning. More notably, it was also noted that hybrid approaches such as RNN-LSTM or CNN-
LSTM still exhibit robustness even in noisy or incomplete datasets [40], a feature that may be especially
valuable for schools where metering data may be inconsistent or contain occasional irregular patterns
such as holidays [42,43]. For instance, Ahmad et al. (2024) used an advanced neural hybrid architecture
CNN-BiLSTM on a compass dataset, and after Bayesian hyperparameter optimization and feature
engineering, obtained a remarkable RMSE = 165.87 kW and MAPE = 6.99%, outperforming both
BiLSTM (RMSE 198.12 kW, MAPE 8.77%) and ANN. The same study also reported that the model still
remains accurate and generalizable across different days of the week including the weekend, which shows
how hybrid models could consistently perform well in school load forecasting tasks, even with varying
load patterns [19].

However, these performance improvements come at the cost of significantly greater model
complexity and data demand which may limit implementation in resource-limited or public schools. The
most obvious shortcoming of hybrid LSTM models is that their complex structures could significantly
complicate preprocessing and hyperparameter tuning, thus requiring more training time, memory and
computational resources, even more than conventional LSTMs [39,43], and although mitigation strategies
such as regularization are possible, they demand further costs and expertise [42,43]. Moreover, due to that
complexity, hybrid LSTM structures also typically require larger and more high-resolution training
datasets and additional data for learning long-term patterns [40], as insufficient data raises the risk of
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overfitting. For instance, Ahmad et al.’s campus data spanned over 343 days and contained 16,474 data
points. Additionally, same as with single LSTM models, interpreting prediction results of hybrid LSTMs
could be difficult due to the complex internal mechanisms, potentially posing challenges for schools that
need immediate decision-making [40,43]. Finally, while hybrids frequently show improvements in short-
term errors, in some cases, hybrid architectures are only comparable to the single LSTM model [20],
which implies that the additional complexity does not guarantee significant gains in every school context,
therefore administrators should take into account such tradeoffs when considering more complex
architectures.

CONCLUSIONS
This review synthesizes recent works on ML methods for forecasting energy demand in schools

and campus buildings, as well as identifying consistent patterns and assessing the practicality of
implementation across studies. Overall, ML methods show clear ability to improve energy management in
schools. Historical load, weather/thermal variables, occupancy/schedule signals, and simple building
attributes (floor area, AC capacity, etc.) appear to be the most reliable predictors of school energy use.
Hybrid and ensemble approaches such as LSTMs generally achieve the lower accuracy, but their
improved performance comes at the cost of greater data requirements, computational complexity,
hyperparameter tuning, and being more difficult to interpret for school administrators without much
expertise.

Several limitations of this paper include the limit in scope: since the review intentionally mostly
covers peer-reviewed literature published between 2019 and 2025, this timeframe may have excluded
relevant earlier or non-English works. Additionally, most papers reviewed are context-specific; the ML
models are only applied to schools and campuses within specific settings, rely on small single-site
datasets, use different temporal resolutions, and apply different preprocessing and validation techniques,
which limits the generalizability and comparability across different models and settings. Finally, several
papers do not explicitly report steps in their methodology, omitting crucial details such as the train/test
split techniques or cross validation techniques used, making it more difficult to fairly assess and
reproduce the method. Moving forward, future research should focus on clearly addressing the
methodology, which includes data resolution, data preprocessing, feature engineering processes,
hyperparameter optimization procedures, as well as noting resource requirements and interpretability in
order to enhance reproducibility and remain accessible and actionable for school administrators.
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