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Abstract: As schools face growing energy demand under constrained budgets, accurate energy
forecasting using Machine Learning has become crucial for improving efficiency and planning targeted
energy management strategies. This review examines studies that apply ML techniques in forecasting
school and campus energy demands. Based on the methodology of these works, a generalized forecasting
framework is proposed, which detailedly outlines: data preprocessing, feature selection, model selection,
and implementation of results to guide implementation. Across studies, historical load, weather
conditions, occupancy and building attributes are among the most reliable predictors of energy demand.
Advanced models such as hybrid LSTM architectures or ensemble approaches generally achieve higher
accuracy but require a larger complete dataset, increased computational costs and intensive
hyperparameter tuning which limits their feasibility in resource-limited school settings. Simpler and more
interpretable alternatives such as MLR often offer sufficient accuracy for schools with limited data
availability and resources. Future studies should focus on addressing existing gaps by ensuring
transparency and consistency in data and methodological reporting.

Keywords: Machine learning; School energy management; Load forecasting methodology, Review

paper.

Resumen: A medida que las escuelas se enfrentan a una creciente demanda energética con presupuestos
limitados, la prevision energética precisa mediante el aprendizaje automatico se ha convertido en un
factor crucial para mejorar la eficiencia y planificar estrategias de gestion energética especificas. Esta
revision examina los estudios que aplican técnicas de aprendizaje automatico en la prevision de la
demanda energética de escuelas y campus. Basdndose en la metodologia de estos trabajos, se propone un
marco de prevision generalizado que describe detalladamente: el preprocesamiento de datos, la seleccion
de caracteristicas, la seleccion de modelos y la aplicacion de los resultados para orientar la
implementacion. En todos los estudios, la carga historica, las condiciones meteoroldgicas, la ocupacion y
las caracteristicas de los edificios se encuentran entre los predictores mas fiables de la demanda
energética. Los modelos avanzados, como las arquitecturas hibridas LSTM o los enfoques de conjunto,
suelen alcanzar una mayor precision, pero requieren un conjunto de datos completo méas amplio, mayores
costes computacionales y un ajuste intensivo de los hiperparametros, lo que limita su viabilidad en
entornos escolares con recursos limitados. Alternativas mas sencillas e interpretables, como el MLR,
suelen ofrecer una precision suficiente para las escuelas con disponibilidad de datos y recursos limitados.
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Los estudios futuros deberian centrarse en abordar las lagunas existentes, garantizando la transparencia y
la coherencia en los datos y la presentacion de informes metodoldgicos.

Palabras clave: Aprendizaje automdtico, Gestion energética escolar; Metodologia de prevision de
carga; Articulo de revision.

INTRODUCTION

Context and Motivation

Schools are among the most significant energy consumers in the education sectors, yet they often
operate under strict budgetary and infrastructural constraints. Their energy consumption is majorly
influenced by various factors, including academic schedules with breaks and holidays, varying occupancy
levels, diverse facility usage patterns, and building characteristics, all of which are further influenced by
geographic location and seasonal variations that drive heating and cooling needs [1]. These specific
characteristics when combined with aging infrastructure, limited funding for upgrades, and the absence of
intelligent energy management systems, often result in unnecessary energy waste and increased
operational expenses [2].

This resource inefficiency places a heavy burden on schools’ finances, which are already tight due
to a lack of governmental funding. In fact, this burden is evident across numerous researches in different
countries, with research by Bray et al. [3] showing that school and university buildings consume
approximately 60% more energy than commercial office spaces for example. In Saudi Arabia for
instance, public educational buildings alone are responsible for approximately 13% of national energy
use, largely due to inefficient lighting and air conditioning systems, according to Alshibani (2020) [14].
According to the U.S. Department of Energy [5], K-12 school districts spend “nearly $8 billion annually
on energy costs”, which accounts for the second largest expense after personnel costs. The U.S.
Environmental Protection Agency (EPA) states that nearly 25% of the energy consumed in American
schools is wasted, an inefficiency that, if addressed, could save up to $20 billion over a ten-year period
[4].

Beyond financial strains and increased operational costs, this inefficiency is detrimental to
students’ education and wellbeing as wasted spending diverts the already scarce resources due to limited
governmental funding that public schools receive away from educational purposes such as instructional or
facility qualities. Public schools in socioeconomically disadvantaged areas are particularly vulnerable as
they are more likely to operate in older, inefficient buildings [6] and are less likely to have access to

energy-efficient upgrades or advanced forecasting tools. Huang et al., in a study of 3,672 schools in
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Ontario, found that energy consumption had the strongest negative correlation with students’ learning
ability [7], which underscores how inefficient energy use perpetuates educational inequity by
disproportionately affecting low-income students.

This pressing issue underscores the urgent need for intelligent solutions that enable schools to
better manage energy use and allocate resources more effectively. In recent years, machine learning (ML)
models have emerged as powerful tools in energy consumption forecasting using historical energy data,
weather information, occupancy rates, school schedules, and data that are specific to K-12 school settings.
Schools could greatly improve their energy management as accurate forecasting allows them to to make
informed decisions on future energy usage based on previous patterns, such as pre-schedule HVAC
systems (e.g., heating or cooling the building before occupants arrive), avoid running systems during idle
times such as holidays or events, reduce heating at unoccupied hours [9], and predict peak cost hour to

shift usage to cheaper off-peak hours.

Literature review

Although public schools are critical infrastructure and major building energy consumers, there is a
clear lack of a comprehensive synthesis of ML-based forecasting specifically in school environments.
Most data-driven forecasting research has focused on commercial buildings or aggregated public building
stocks rather than on K—12 or typical school facilities [7]. This is due to the intrinsic complexity of school
buildings: they have highly variable daily and seasonal occupancy driven by class schedules,
extracurricular events, and holiday calendars; they also often combine mixed uses (classrooms, gyms,
cafeterias, auditoria); and they frequently operate on a strict budget [7].

A growing number of public schools and educational facilities around the world have begun
incorporating ML models into their energy management strategies, with varying levels of forecasting
accuracy and impact on efficiency. Models such as Multiple Linear Regression (MLR), Artificial Neural
Networks (ANN), Support Vector Machines (SVM), Random Forest (RF), Multilayer Perceptron (MLP),
and Long Short-Term Memory (LSTM) networks have been tested across diverse educational settings in
different countries. For instance, in Croatia’s Osijek-Baranja County, multiple linear regression (MLR)
and artificial neural network (ANN) models were applied to primary and secondary school electricity
data: ANN achieved R* = (0.957 in training (vs. 0.950 for MLR), with CV(RMSE) = 19.8 % which shows
high variance in energy consumption and potential inefficiencies in resource use for schools built in
differing conditions. In Eastern Province, Saudi Arabia, a regression-based model using 350 school
observations demonstrated prediction accuracy over 90 %. The study identified AC capacity and roof area

as strongest predictors influencing consumption, suggesting how these models are able to pinpoint the
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cause being infrastructure design that drives inefficiency. Capozzoli et al. (2015) analyzed annual energy
demand for heating across 80 Italian schools using Multiple Linear Regression (MLR) and Classification
and Regression Trees (CART); both achieved strong accuracy (R? = 0.85; MAPE = 15%) but CART was
able to provide interpretable insights on key drivers of energy use such as floor area and occupancy [68].
Amber et al. (2017) also applied MLR to forecast daily energy use of a university over a five-year period,
and the model achieved a RMSE value of around 12-13% [69]. Similarly, many studies utilized tree-
based and ensemble techniques in school energy forecasting. Tariq et al. (2024) compared Decision Trees
(DT), k-Nearest Neighbors (KNN), Gradient Boosting Regression (GBR), and Long Short-Term Memory
(LSTM) networks for energy forecasting in 352 schools, and reported that DT yielded low training error
(3.58%), while KNN overfitted, and GBR and LSTM performed better across wide data ranges; school
size and AC capacity were the most influential variables [70]. Khaoula Elhabyb et al. (2024) [65]
compared GBR, RF and LSTM models using data from three university buildings, and reported that GBR
yielded the most accurate forecasts. Recently, more studies have chosen neural network techniques to
capture non-linear relationships, such as Ganesh Doiphode and Najafi (2020b) who trained a Multi-Layer
Perceptron on three years of monthly data of 25 K-12 schools in Florida [71]. Geraldi and Ghisi (2020)
modeled electricity consumption for 90 public schools in Brazil using Bayesian Networks on three years
of monthly billing data and survey inputs, and captured key insights such as the number of students being
a more reliable predictor than floor-plan [72]. Hybrid models with optimization algorithms have also been
commonly used, as Khan et al. (2025) compared ARIMA with a Quantum-Inspired Particle Swarm
Optimization (QPSO)—tuned RNN on building-load data, and reported the latter achieve the lowest error
(MAE = 15.2; RMSE = 22.8), showing the advantage in accuracy improvement that hyperparameter
tuning brings [73]. Current reviews report several consistent limitations that exist within this field of ML
applications for load forecasting. Multiple reviews point out the absence of datasets to the public [74],
and call for public data to enable generalizability and reproduction. Zhang et al. (2021) also identified that
most papers overly focus on the machine learning development while the data side (data resolution,
training/testing data split, etc.) are insufficiently discussed [75]. Notably, most studies focus on residential
building load forecasting [76], leaving educational buildings underresearched.

This systematic review aims to address the gap on Machine Learning applications in school energy
forecasting specifically by synthesizing the methodology of forecasting across different models in
different countries; comparing the most commonly employed models in terms of dataset characteristics,
input features, and forecasting accuracy; reviewing representative case studies to identify regional
patterns; analyzing dataset characteristics and performance results; as well as identifying challenges and

opportunities in widespread implementation. The overall purpose of this review is to inform readers of the
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practicality and effectiveness of ML-based forecasting models, with the broader goal of encouraging the
widespread integration of energy management systems in schools worldwide to reduce waste, redirect
resources towards improving students’ education, and move a step closer to achieving equity in
educational opportunity. In addition, this survey paper also seeks to inform and provide accessible
guidance by generalizing replicable methods and explaining the various complex concepts in a simplified
way so that stakeholders, policymakers, and school administrators without much background on Machine

Learning can more easily apply those understandings into the integration of energy management systems.

METHODOLOGY

Review scope and criteria

This systematic review focuses on high quality peer reviewed literature that apply machine
learning techniques to forecast energy consumption in school or educational building contexts, including
K-12 and higher education buildings where methods are transferable to K—12 settings.

Due to the rapidly changing nature of machine learning methods and data availability, the review
only includes recent studies published between 2019 and 2025 to ensure currency. Quality, reliability and

relevance to the central topic of school energy forecasting determine final inclusion.

Databases searched and search terms
Databases searched include Google Scholar and major academic publishers and bibliographic
databases to maximize coverage of peer reviewed and conference literature: Scopus, MPDI, IEEE Xplore,
Sage Journals, ScienceDirect (Elsevier), SpringerLink, JSTOR, and arXiv for preprints. Additionally,
PubMed Central was used primarily to gather insights on the impacts of poor energy management on
students’ health and academic performance.
Example search terms used included combinations of the following key words and phrases
e "machine learning" AND "energy forecasting" AND (school OR "K-12" OR "educational
building" OR "school building")
e '"deep learning" AND "building energy" AND (school OR "K-12")
o "LSTM" OR "ANN" OR "random forest" AND "school energy" (keywords change
depending on the ML methods being researched for different sections)
e '"load forecasting" AND "school" AND ("occupancy" OR "schedule")
e '"energy prediction" AND "educational" AND ("machine learning" OR "deep learning")
e '"building energy forecasting" AND ("public school" OR "K-12")
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e ‘“‘energy forecasting” AND “school” AND “case studies”

Selection process

This review strictly followed the PRISMA approach, which details the number of sources

identified, the screening process, sources included and excluded, and reasons for exclusions.

FIGURE 01: Studies selection process based on criterias using the PRISMA approach.

Identification of studies via databases and registers i
Records removed before
5 screening:
-§ Records identified from”: gugl;c:}te records cemaved.
= Databases (n = 162) &
= . il Records marked as ineligible
5 Registers (n =1) by automation tools (n = 0)
= Records removed for other
reasons (n = 23)
—/
A4
—
Records screened »| Records excluded™
(n=88) (n=40)
v
Reports sought for retrieval Reports not retrieved
2 (n=48) | (n=11)
§
: I
W
Reports assessed for eligibility Reports excluded:
(n 5 37) . — " Reason 1: Not a ML
implementation (n = 8)
Reason 2: Notina
school/campus setting (n = 9)
Reason 3: Insufficient
methodological detail (n = 7)
L ———
A4
3 Studies included in review
S (n=13)
T Reports of included studies
= (n=13)

SOURCE: Prepared by the authors (2025).

During the identification phase, database queries and backward citation retrieved 13 studies for in-
depth review, and a total of 76 papers for references. Afterwards, the screening process is carried out,
which removes sources with duplicated or similar titles or abstracts. Papers that passed this screen stage

underwent full text review for eligibility based on the following inclusion and exclusion criterias:
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e Empirical studies, reports, or conference papers published between 2019 and 2025.

e Studies with a high relevance to the topic, meaning they apply machine learning or deep learning
algorithms to forecast energy consumption or energy-related variables in school or educational
buildings, or other campus studies where models are transferable to K—12 schools.

e Papers that adequately report model architecture or algorithm, input features, dataset size and
temporal resolution, and at least one performance metric to allow performance assessment in the
review

e Full text in English is available
Conversely, studies that are not relevant to the review, such as papers that focus exclusively on

residential or commercial buildings without transferable application to school buildings are excluded.
Sources published before 2019, sources without available full text or opinion pieces without adequate

methodological details are similarly omitted.

Synthesis method

To synthesize the findings, Table 1 gives a structured qualitative analysis that systematically
integrates findings across studies to highlight similarities and differences in results regarding model
performance, settings, input features and implementation practicality. Results from the different case
studies reviewed are standardized using the generalized framework in Section 4, which outlines some of
the most common data features, preprocessing procedures, training and validation methods, and
hyperparameter optimization techniques. Finally, in the discussion section each model category is then
comparatively analyzed based on the quantitatively and qualitatively reported performance, data demands
and computational complexity. This synthesis method allows the review to recognize the similarities and
differences across studies, and thus drawing generalizations that could support decision making for school

administrators.

RESULTS AND DISCUSSION

Case Studies Analysis

The case studies that form the foundation of this review paper encompass more than a dozen cases
of ML-based models being implemented in real-world settings in Asian, European, Latin America and
Middle Eastern countries, representing a range of school building levels (K-12 classrooms, secondary
schools, university campuses). Different studies in different settings reflect the unique characteristics of

the country in which it was conducted (for example, outcomes are often shaped by the country-specific
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climate conditions that strongly influence energy demands), as well as the specific models used in each
study.

Case studies [9] to [21] will be grouped and discussed systematically based on the family of the
models used, while also noting their climate and geographical context, then compared and synthesized
using standardized tables. Synthesizing the current limited number of case studies in the field will be
especially useful for identifying patterns, methodological trends, and general frameworks, since energy
forecasting in schools are rather fragmented and context-specific; most papers are case studies rather than
large multi-country datasets.

Table 01 provides the overview of recent literature (2019-2025) on energy consumption

forecasting in school settings by summarizing studies from multiple countries using different models,

presenting results and allowing side-by-side comparisons.

TABLE 01: Summary of published articles on schools using ML applications for energy demand

forecasting
Refe | Dataset and Objective Techniques Input Evaluation Reported Limitations/
renc | Country/region features metrics results Future
€ suggestions
[9] Dataset Build a MLR Level of R? Two-way Pre-selected
Run | collected from | preliminary (built two MLR indoor CO> | MAE (kWh) | interaction predictors
etal. | school MLR model to | forms: one-way Indoor MSE (kWh) | model reported might not be
(202 | buildings in predict hourly and two-way temperature | MAPE (%) better R? for the most
3) the South of electricity interaction Indoor RMSE both training set | . fuential
France using consumption in | models) humidity (kWh) (R?=74%) and ntiuentia
sensors: COz, winter for Outdoor testing set (R? = variables
indoor temp, school temperature 77%) compared | Recommend
indoor buildings Outdoor to one-way adding up to 7
humidity Present case humidity model, but hours lagged
sampled every | study on three Global solar underestimates climate/indoor
15 minutes; school/universi radiation results for variables such
electricity ty buildings Day index higher loads (> as delayed solar
consumption (GEIL, GMP, (weekday/w 30kWh/hour) ‘ot
and outdoor GC) in eckend) Per-building r?dlatlc;)(?’ and
climate data Southern Time index performance also adding
sampled France (occupied/n differs: GMP occupancy rate
hourly. on- best (R%=76%, as ad.dltlonal
Analysis is occupied) MAPE=22%), predictors
done over five Building net GC moderate Validation step
months floor area (R*=64%, should be
(November MAPE~26%). included
2021 to April Performed
2022) poorly on GEII
building
(R2=55%,
MAPE=69%)
[10] Dataset Propose a MLR City R? More than 90% Authors imply
Moh | collected from | multiple (location) of the that future
amm | active schools | regression- AC capacity predictions had | \orks need to
edet | in eastern based model Number of errors of less :
al. province of for estimating floors than 15% 32?:?:;3336
(202 | Saudi Arabia energy Total roof Standard
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1) consumption in area deviation for other factors
316 data points | Saudi Arabian Type of residuals was (construction
were used to schools school 28,764.02 kWh materials, roof
train, 35 for Number of Sensitivity shape, school
validation staff analysis L

Building revealed that Orlentatlon,. and
age AC capacity and floor material)
Number of building age had anfl ?dd more
students the most impact | training
on the output instances
consumption

[11] | Obtained 121 Produce BS regression Building R? BS regression 1-year

Chu | questionnaires | forecasting CNLS regression geometry (one variable): consumption

ng results (out of | models with Lighting R?2=0.316 record limits

and | 472 secondary | variables that characteristi CNLS temporal

Yeu | schools reach school cs regression (five lvsis of

ng out in managers can (TS/T8/LED variables): R? = analysis o

(202 | Hongkong) act on (lighting, shares, 0.444 weather factors

0) with no AC, lighting Best CNLS and
missing data management control) regression heating/cooling

practice) using AC model recorded | degree days
Target =~ BS regression characteristi adj-R? = 0.654 CNLS models
annual energy | as the baseline cs CNLS can be difficult
use (sum of 12 | and compare Number of regression to interpret
months of that with CNLS classes improved Methodology:
utility bills) (proxy of goodness of fit Few schools
ICT counts compared to BS .
due to low models retumed th?lr
cross-school questionnaire
variance) late and small
Managemen sample size
t practices Large number
of hyperplanes
is
disadvantageou
S

[12] | Sampled 173 Determine ANN Electricity R? Optimum ANN | Capacity of

Pras | schools in Fiji; | factors MLR demand RMSE model had the different

ad 154 sampled affecting (dependent second highest electrical

(202 | schools were electricity variable) R20f95.3% :

4) grid connected | demand in and the second appliances used
Regression Fijian schools; Independent lowest RMSE of | W35 T‘Ot
modeling took | assess and variables: 59.4 kWh/year, 0011.51dered
only 75 data compare MLR Age of outperforms while ]
points out of and ANN schools optimum MLR | constructing the
151 data points | performance; Number of model (R? = regression
(due to constructing classrooms 95.3% vs R? = models
missing value) | these models Floor area 73.3% and Future
55 used for for electricity Number of RMSE = 59.4 directions and
constructing demand buildings kWh/year vs :
regression prediction in Number of RMSE ~ rec.:ommendatlo
models, 20 for | grid-connected air 0.2248) ns: ..
testing schools conditioners Determined IF electricity

Number of Light is the demand data,
students most influential | floor area data
Number of variable and number of
lights affecting students could
Number of electricity be accessed to
teachers demand, construct a

followed by large dataset,

number of air then more

conditioning

robust

systems, school
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type, and school
category

predictive
models could
be implemented
Behavior of
students and
teachers can
also be studied
on how those
change energy
demand
Schools are
commended to
carry out
energy audits to
keep track of
energy use and
for comparative
studies

[13] | Dataset Identify factors | ANN Total R? Total area (A) is | Potential
Begi | retrieved from | influencing MLR number of MSE the strongest limited
¢ . Energy annua'l users MAPE predictor of . generalizability
Juri¢ | Management electrical Total useful | RMSE annual electrical to other regi
. . . . gions
i¢ Information consumption surface area | CV RMSE consumption (R ith diff t
and | System of (AEC) in Heated ~0.944) with ditteren
Krsti | electrical school volume of chmgt}c
¢ energy usage buildings in the building ANN achieved | conditions and
(202 | for 149 school | Osijek-Baranja slightly better building
4) buildings in County, performance practices
Croatia's Croatia than MLR ANN model
Osijek-Baranja | Develop and model in both requires
105 bdings | sceuracy of 0957 vs 050 | Sghificant
uildings | accuracy o .957 vs 0. :
(70.5%) ANN and MLR and validation Compmatlongl
training; 44 prediction (R?=0.954 vs resources an
(29.5%) models to meet 0.949), with expertise to
validation practical needs, slightly lower ¥mplement and
Enhance compare the RMSE and interpret
robustness by | trade-offs CVRMSE Proposed future
accounting for | between model direction:
diverse school- | complexity and Validation of
buildﬁng usability the model in
practices :
(include both various
primary and geo graphlcal
secondary settings, collect
schools) data from
schools in
different
regions and
consider their
different
characteristics.
Extend the
study over a
long-term
period
[14] | Energy Identify factors | ANN City MSE MSE = The model can
Alsh | consumption that influence Number of 0.00542362 be extended to
ibani | records f01‘r 352 | school energy floors . (Training) = include factors
(202 | schools (nine consumption in Total built 0.0159995 not in the
0) cities and four | Eastern area—all (Selection) = dataset
different Province (hot floors (sqm) 0.0564305 current datase
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school types) and humid Total roof (Testing) (such as
across Eastern | climate zones), area (sqm) schools’
Province of develop a Type of Validation orientation in
Saudi Arabia. prediction school achieved
model for Number of satisfactory urlzla]gl areas)
school facilities students results: 87.5% gn ¢ .
Number of accuracy integrated with
staff a BIM model
Age of Weakest
building correlation:
Number of —0.35 between
classrooms “type of school”
Total air- and “AC
conditioned capacity”
area (sqm) Strongest
AC capacity correlation: 0.95
between
“number of
classrooms” and
“total air-
conditioned
area”
[15] Real-life Enhance ARIMAX Temporal MAE XGBoost 4 Consumption
Was | electricity forecasting XGBoost data: day, MAPE model achieved | patterns are
esa consumption accuracy for SVR date, month | RMSE best MAPE somewhat
etal. | dataset froma | microgrid- Inerta score (19.6%) .
(202 | technological based buildings variables: and best MAE sP e?lﬁc an(lil
2) university in during COVID- previous (81.494) limited to the
Bandung, 19 by record of local context of
West Java incorporating each XGBoost the .study
internet data variable in achieved best during the
the dataset RMSE score, COVID-19
(lag feature) better capturing | period
Publicly electricity COVID-19
available consumption show
data: dynamics that :
COVID-19 XGBoost 4 unpredictable
data from even.t S, SO
public Lagged (inertia predictors
government variables) needed to be
website, improve customized to
Google prediction context-specific
Mobility, (MAPE score of | COVID
and Google XGBoost 4 policies,
Trends improved from internet data
?g‘gzﬁ’;o only partly
e represents the
COVID-19 data | Public’s
concern

boosted
performance:
MAPE score
increases 21.4%
— 20.8% for
XGBoost and
43.8% — 22.6%
for ARIMAX
model

Internet-based
data improved
forecasting
accuracy
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[16] Data collected | Assess SLR Monthly R? Linear models: Linear models
Neb | over five years | predictive MLR weather MAPE In terms of R?, (SLR, MLR)
ojsa | (2015-2019) models’ ability | DT data: SLR model are easy to use,
Juri§ | from 11 public | to identify key | ANN Heating achieves lower but have
evi¢ | kindergartens factors in heat Degree precision than ..
etal. | in Kragujevac, | consumption in Days MLR model restrictions due
(202 | Serbia public (HDD) (0.84 vs 0.89) to L .
1) kindergarten MAPE the same | multicollinearit

Constant for both (33%) y and low

values Low- prediction

(building consumption accuracy in the

characteristi range (<10 low heat

cs): MWh/month): consumption

Building both models had

. range
built year poor accuracy .
. Downsides of

Type of High-

built consumption the ANN

Heating rage (>40 model:

source MWh/month): complexity,

Number of MLR 11% making it hard

buildings better accuracy | to interpret and

Heated floor than the SLR develop

?{reat q Non.li compared to

cate on-linear :

building models: linear models

volume ANN

External outperformed

walls gross DT in both test

surface and training set

External in R? values

walls net (0.96 and 0.92

surface vs 0.92 and

(EWNS) 0.84) and

Gross MAPE (ANN

fenestration achieve 10%

area (GFA) better than

Ceiling accuracy than

surface DT)

External High range:

walls ANN (MAPE =

average U- 9%) performed

value better than DT

(EWA-U) (MAPE = 16%)

Average

fenestration

U-value

(AF-U)

Average

ceiling U-

value

Gross

building

envelope

surface

Net building

envelope

surface

(excluding

fenestration

area)

Roof type

(flat or

pitched)

Number of

building
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floors

Survey-
based input:
Area of
windows
used for
classroom
ventilation
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[17] An educational | Propose a RF Time R? SHAP-Stacking | Limitations are
Cao | building in prediction XGBoost features, MAE model achieves | pot explicitly
etal. | Xi’an, Shaanxi | model that uses | SVR meteorologi | MSE best stated

(202 | province SHAP method | GRU cal features, | RMSE performance Implications
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FIGURE 02: Flowchart of generalized framework of school energy demand forecasting using ML
techniques.
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Data and feature patterns

Across the case studies, the energy consumption is most strongly predicted by the following
factors: historical load, weather variables, occupancy levels, as well as other building characteristics such
as floor areas, number of classrooms, AC types, etc.. Historical load consumption and lagged features are
consistently used to forecast future energy consumption in almost every study mentioned, and appear to
be one of the most reliable predictors. For example, in the study by Faiq et al. (2023), it is suggested that
the model use “the previous year's energy data and forecasted weather as the input parameter to forecast
the next day,” as a core input to the LSTM day-ahead forecast [18]. These features are especially crucial
in the study of educational buildings in Bandung, Indonesia in the context of the COVID-19 outbreak, in
which Wasesa et al. (2022) [15] and others tested single-lag versus multi-lag by incorporating two types
of inertia variable sets: variable 1 (xt-1) and variable 2 (xt—1, xt—2, xt—3, xt—4, xt—5, xt—6, xt—7, and

xt—14). The results reported significantly improved prediction accuracy when multi-day lags (1, 2, 3,...,
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14-day history) are included; specifically, the MAPE score of the XGBoost 4 model showed an
improvement from “28.4% of inertia variable 1 to 19.6% of inertia variable 2” [15]. Similarly, using
inertia variable 2 also improves the XGBoost 6 model as the MAPE scores also displays improved
accuracy from “35.8% (inertia variable 1) to 24.9% (inertia variable 2)” [15]. While the overall evidence
supports that lagged historical data are crucial for reliable forecasting, it is important to consider that not
every technique benefits equally from lagged predictors, as seen in the limited gains for SVR models in
the same study.

Besides historical consumption, multiple studies also utilize weather and thermal conditions data,
such as humidity, temperature or irradiance level, as a common input data for energy forecasting. This is
crucial since weather features like rainfall may decrease or increase energy consumption for cooling in
hotter climates [45]. Ortega-Diaz et al. (2025) [21] observed that the humidity level fluctuations
throughout the day demonstrated an “inversely proportional relationship” with the outside temperature,
with that temperature coinciding with AC power consumption in the classroom. Moreover, another
weather data type which is indoor humidity, also displays a negative correlation with the AC consumption
[21], which shows the link between cooling demand and outdoor thermal conditions. Similarly, in study
[18] where LSTM was used to predict consumption in Multimedia University in Malaysia, it was found
that environmental variables such as temperature could “greatly affect the accuracy of the model.”
Specifically, this study tested the importance of each weather variable by removing average pressure,
temperature, humidity, wind speed and rainfall levels, and found that it significantly affected the model’s
performance. By removing average temperature, MAE rises to 212.792 kWh, increasing by
approximately 28.8% as compared to the MAE of 165.2 kWh when said data is included. Removing the
rainfall amount raises MAE to 181.361 kWh, which is roughly 9.8% higher than full model MAE, and
without average temperature and rainfall amount, the model obtained higher RMSE scores around 580
kWh. Overall, this allowed Faiq et al. (2023) to conclude that “temperature, wind speed, rainfall amount
and rainfall duration are important variables in increasing the performance of the model,” and temperature
and rainfall are important parameters for energy forecasting. Most study settings utilize occupancy levels
(occupied/unoccupied) or occupancy signals (number of classes, number of occupants, school holidays
and weekends, timetables, event schedules, etc..) as one of the main input variables for predicting
consumption. Occupancy rate is sometimes reflected using time features (time of day, day of week) [17].
Occupancy significantly influences energy consumption due to the use of electronic equipment, lighting
and air conditioning; in other words, higher occupancy levels correlate with an increased use of resources,
requiring more energy to operate [13,21]. Ahmad et al. (2024) [19] further enforced this as they reported

that lecture weeks consistently saw higher load consumption and more significant fluctuations compared
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to non-lecture weeks, which emphasizes the significant role of occupancy in forecasting energy demand.
In addition, building attributes and features are also crucial variables in energy prediction; as identified by
Mohammed et al. (2021) using a sensitivity analysis, building characteristics such as AC capacity and

building age were the most important factors affecting energy consumption [10].

Data preprocessing and feature engineering

Data cleaning: Outlier detection and Missing value imputation

Building energy forecasting oftenly faces the issue of poor quality data, namely missing values
and outliers due to faults in data collection, transmission and storage and the inherent complexity of
building operations, which necessitates the process of data preprocessing to ensure the validity and
reliability of analysis results [46]. To enhance data quality and improve prediction, studies have widely
employed data cleaning which includes missing value imputations and outliers and noise removals [46].
In building energy prediction, noise, which includes erroneous data values and missing values, implies
data points that do not reflect reality such as ones caused by faulty sensors and transmission equipment
[47]. On the other hand, outliers are primarily determined by statistical methods or non-statistical
methods. In the studies reviewed, two studies that addressed outlier removal both used statistical methods.
In educational buildings energy prediction in Shaanxi, Cao et al. (2023) processed the outlier using the
standard deviation method, or the 36 method which measures the distance of the factor from the mean
[17]. This method states that if the deviation from the mean value is more than three times, the value of
this point is considered an outlier and therefore eliminated [17]. Similarly, Mohammed et al. (2021) [10]
used a Grubb’s test, a statistical method for detecting outliers in a univariate data set in an approximately
normal distribution, and the highest and lowest values would be considered potential outliers.

Regarding handling missing values, Fan et al. (2021) [46] suggested that there are two ways to
handle missing values in building operational data, the first being simply removing the data samples that
contain missing values, as done in the process of data cleaning of six Swedish schools, in which missing
data and outlier values to simply removed before normalizing the datasets [20]. The second method of
managing missing values involves applying missing values imputation methods to replace those missing
data points with inference ones. Some common methods include mean/median imputation, backward or
forward filling, KNN imputation or regression based imputation [46]. Wasesa et al. (2022) reported
29,513 missing values (4.2% of the total 701,280 data) in electricity data in minute intervals, which
required data imputation using the NOCB (Next Observation Carried Backward) method of backward

filling in which instead of filling the missing value with the last observation, it fills it with the next

RIMA, v7, n2, 2025, €256.



Exploring how Industry 4.0 and AI Technologies Can be Applied in the Agricultural Food Supply Chain: A Systematic
Literature Review

observed, non-missing value [15]. Cao et al. (2023) deployed linear interpolation, which is the method of
curve fitting using linear polynomials to construct new data points within the data range, to estimate the

missing value according to two adjacent data points to be interpolated in the sequence [17].

Feature selection

It is critical to note that while adding more input variables can improve prediction in some cases,
the more features entered does not necessarily result in higher accuracy; rather, the degree of influence of
each feature on the consumption is what is helpful in targeting energy efficiency [17]. In fact, Cao et al.
(2023) reported that the model’s prediction accuracy “decreases with the increase of number of features,”
which led the authors to eliminate weaker predictors and enhance performance by limiting their optimal
dataset to time, total solar radiation, historical consumption and day of the week. In the context of
building load prediction specifically, feature importance analysis to retain relevant and most influential
features while discarding redundant or irrelevant features, preventing risks of overfitting, poor

generalization capability, reliance on noise, and overall improving the model’s performance [48].

To determine the significance or “weight” of specific features within the model, multiple studies
reviewed employed powerful feature importance analyses. Some commonly used feature selection
techniques include the use of Pearson’s correlation analysis which was deployed in the research (Shahid
et al., 2023a) in order to determine how strongly variables (such as different date time parameters, energy
consumption, and actual degree day) are associated with heating energy use before incorporating them in
predictive models [20]. The MIl-based feature selection, which evaluates each feature and yields a
relevant feature subset, is also commonly used as it can handle data with both categorical and numerical
variables. Notably, the SHapley Additive exPlanation (SHAP), an explanation model that determines the
credit and impact of an input feature to a model’s output prediction accuracy, has been commonly
deployed in multiple studies to evaluate the positive or negative impact a variable has on the model which
leads to changes in the SHAP value [49]. In [18], the authors deployed this method by removing
individual environmental variables across repeated simulations to test the impact on accuracy, and
reported that excluding temperature or rainfall significantly worsened performance, which allowed the
conclusion that those variables were among the strongest parameters. Similarly, Cao et al.’s study also
deployed the SHAP model for feature importance analysis [17], and results showed that the SHAP-
Stacking model shows the “best results in the calculation of each evaluation metric.” Specifically, the

SHAP-Stacking model was the best performing in eight models, having significant reductions from
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34.55% to 13.64% in RMSE and 10.25% to 30.54% reduction in MAE, indicating that by adopting

feature importance analysis techniques, the researchers were able to obtain more accurate predictions.

Data normalization and scaling

Data normalization is the process of rescaling features to a standardized scale, which ensures that
each variable contributes equally and prevents any feature that simply has a larger magnitude from
disproportionately dominating the analysis [50,51]. Data normalization is critical in the data preparation
process as it mitigates the impacts of scale variations of features in the raw input data and ensures that
each feature contributes effectively to the analysis [52]. Normalization improves prediction accuracy as
well as the model’s convergence speed [17]. Commonly assessed normalization approaches in energy
consumption prediction include Min-Max Scaling, Mean, Z-score, IQR and VSS methods. Among the
case studies reviewed, most common normalization approaches are Min-max normalization and Z-score
normalization.

In particular, Cao et al. (2023) utilized the Min-max scaling approach, a method that rescales
features with differing values to a standardized range, typically between 0 and 1 [17]. This method was
also adopted by Wasesa et al. (2022) in their study of Indonesian educational buildings to normalize data
for both the predictor and the target variables [15]. The specific formula of this scaling approach is as
follows, in which x is the raw data retrieved, x scaled is the normalized data between a specific range,

xmin is the minimum value from the raw data, and xmax is the maximum value from the raw data.

Xscaled

[1]

Similarly, in their study of energy prediction in school buildings, Alshabani (2020) used the
Minitab software to automatically scale numeric factors, using the minimum, maximum, mean and
standard deviation and reported a good level of accuracy. In the software, the categorical data were
transformed into numerical data; specifically, the city factor was encoded numerically on a 1 to 7 and the
types of schools on a 1 to 4 scale, and both were defined as categorical variables [14].

Another popular standardization technique is Z-score normalization. Ortega-Diaz et al. (2025)
[21], for instance, decided to use StandardScaler to normalize data points from sampled Colombian
schools via finding the z-value which measures how far a value x is from the mean of a data set. By

calculating the Z-score, observed data points are transformed to change the observed values to have

RIMA, v7, n2, 2025, €256.



Exploring how Industry 4.0 and AI Technologies Can be Applied in the Agricultural Food Supply Chain: A Systematic
Literature Review

characteristics of a standard normal distribution in which the mean is 0, and the standard deviation is 1.
The transformed data is equally distributed above and below the mean value, which makes the variance

equal to one [53]. This method follows the following formula:

Xstandardized

(2]

Where p is mean and o is standard deviation.

Model training, data splitting, tuning and validation

Data splitting

The model training process in educational buildings energy forecasting involves feeding historical
school-specific data into chosen machine learning algorithms which then can learn the patterns and
uncover the relationship between input variables and energy consumption, gradually adjusting their
internal parameters to minimize errors and improve prediction accuracy. Typically, model training
involves the following main stages: a training phase where the chosen algorithm learns patterns from
input data, a validation phase where performance is assessed using evaluation metrics, and
hyperparameters are tuned; and a testing phase where the model is tested on unseen data to measure its
generalization ability beyond the specific study setting.

Arlot, S., & Celisse, A. (2010) emphasize that, since real-world datasets are limited, data splitting
is essential to mitigate overfitting, or the case where the model performs well on training data but
performs poorly on unseen data [54]. Data splitting involves allocating a portion of the data for training,
and the remaining portion for testing and validation. One of the most common and simplest data
partitioning techniques is the holdout method, which involves randomly holding out the test dataset from
the training process while the rest is reserved for testing [55]. Generally, although the exact proportions
may differ, a large portion of roughly 70-80% of the data is allocated to the training phase, though this
share can increase to as much as 95% when larger datasets are available [55]. In fact, among the case
studies reviewed, multiple studies utilized this holdout validation as their data splitting method due to its
simplicity. For instance, Orgeta-Diaz et al (2025) experimented with different split proportions of 50:50,
60:40, 70:30, 80:20, 90:10, and found that the 80:20 and 90:10 ratios yielded the lowest RMSE values
across models, while the 70:30 fraction performed worst, indicating that a larger training set generally

yields better accuracy [21]. In the study by Faiq et al. (2023) [18] in Malaysia applying CNN-BiLSTM

RIMA, v7, nl, 2025, e256.



Exploring how Industry 4.0 and AI Technologies Can be Applied in the Agricultural Food Supply Chain: A Systematic
Literature Review

models, 70% of the dataset was used for training while the remaining 30% was used for testing, while
another study in Malaysia by Ahmad et al. (2024) [19] selected a 85-15 split. Similar approaches were
chosen in Saudi Arabian researches: Mohammed et al.’s study trained a regression model with 316 data
points while holding out 35 (11%) for validation [10], and Alshabani et al.’s study partitioned data into
60% for training, 20% for selection, and 20% for testing [14]. Such findings demonstrate the flexibility of
the holdout method as the proportions can be adjusted differently from study to study based on available
data and model evaluation needs. While this approach is simple, it is generally suitable for larger datasets
with years of measured data, and may not reflect the patterns reliably for smaller datasets [55].
Additionally, the nature of school energy presents unique challenges such as being limited in duration,
and relying on a single split may lead to inefficient use of scarce data while also making models highly

sensitive to that specific split, worsening the model’s ability to generalize.

Hyperparameter Optimization

Hyperparameters,such as number of hidden layers, neurons per layer, or learning rates, unlike
parameters which are learned during the training, are set by the user prior to the training process.
Hyperparameters optimization (HPO) is the process of selecting and tuning the parameters of the
forecasting algorithms to the best configuration possible [56]. The accuracy of an energy prediction
model is dependent on the configuration of its hyperparameters [57], playing an important role in the
forecasting accuracy [56]. The most commonly used HPO methods include Grid search, Random search,
Bayesian optimization, heuristic optimization, more advanced evolutionary algorithms, etc..

Random search involves training and testing the model based on random combinations of the
numeric, integer, or categorical hyperparameters [58], and according to Hossain et al. (2021) [57], this
method could better identify new combinations of the parameters or better discover new hyperparameters
in order to improve the optimization, leading to improved performance thought taking more time.
Random search typically has much better performance than grid search in higher-dimensional HPO
settings despite being computationally costly [58].

Another widely used HPO approach is grid search, which involves the user setting a fixed grid of
hyperparameters and the model is trained exhaustively based on every possible combination within that
grid [57]. In the study of Indonesian educational buildings [15], this grid search approach was applied
across several algorithms. For the XGBoost models, Wasesa et al. (2022) optimized six parameters:
maximum depth, learning rate, minimum child weight, objective, sub sample and tree method. For SVR
models, they optimized four parameters: C, gamm, kernel and epsilon. Similarly, the optimization for

ARIMAX models in this study considered AR, I and MA [15], which demonstrates the ability of grid
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search to handle multiple different model types for linear ARIMA models to boost algorithms. However,
the author also stated that the training time varied considerably with XGBoost taking the longest runtime,
acknowledging the common limitation of grid search of being computationally expensive for exhaustive
evaluation.

Bayesian Optimization (BO), an automated tuning method, is becoming widely used due to its
ability to find the optimal hyperparameters in fewer steps and higher efficiency than grid-based methods
[57]. Bayesian Optimization models the mapping between hyperparameters and past performance [62],
essentially creating a surrogate model using Gaussian process or a random forest [58], allowing the
optimizer to focus its search on the most promising regions of the hyperparameter space [59,60]. This
approach of creating a surrogate model could be effective for handling hybrid models such as CNN-
BiLSTM used for education buildings load forecasting, because training those networks is
computationally heavy and the hyperparameter space is large. In [19], the authors utilized the Bayesian
optimization algorithm to facilitate the identification of the best hyperparameter values and therefore
enhancing the performance of the CNN-BiLSTM model. Specifically, they include the unique layering
strategy of CNN as the foundational layer with 128 filters and four kernel sizes; followed by seven
additional BiLSTM layers. The BiLSTM was configured with 180, 80, 80, 50, 10, 15, and 1 neurons
across its layers, while the ANN block contained eight layers with neuron counts of 100, 100, 80, 120,
100, 30, 90, and 1. They emphasized that they were able to obtain the best hyperparameter values using
Bayesian optimization and ultimately achieve improved accuracy with less errors. Overall, Wasesa et al.
(2022) noted that facilitating optimal hyperparameters values using BO algorithm led to enhanced
performance and efficiency of the CNN-BiLSTM mode [15].

Evolutionary algorithms stimulate natural evolutionary processes of genetic improvements in
humans or animals to solve optimization problems [61]. In simple words, this approach is based on the
concept that when individuals of a population compete for scarce resources, only the fittest individuals
could survive [63]. This mutation process of selecting fittest value could be applied to optimization where
evolutionary algorithms are used for hyperparameter tuning. In the study of Serbian schools [16], a
Genetic Algorithm was used to develop an Evolutionary Assembled Artificial Neural Network (EANNN)
which was utilized for heat consumption forecasting in kindergartens to configure optimal ANN
parameters, which include: the number of neurons in a hidden layer, the type of activation functions in the
layers, the number of learning epochs, learning rate, and momentum. According to NebojSa JuriSevi¢ et
al. (2021), the optimization using GA involves automatically and iteratively configuring and evaluating
the ANN performances, improving performance via essentially updating the populations of candidate

solutions until convergence [16].
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Apart from the common optimization approaches reviewed above, heuristic and manual tuning
approaches are evident in several case studies. For example, for their NN model, Alshabani (2020) [14]
employed incremental and stepwise optimization rather than exhaustive searches in order to figure out the
optimal number of hidden neurons. According to Alshabani, the algorithm for order selection was
“incremental order” which involves beginning with the minimum number of neurons (order), gradually
increasing with a certain number of perceptions in each iteration, and finally selecting the optimal order
with the lowest selection lost; the final result was an ANN with three hidden neurons. The authors also
note that in a complex model like such in the study, the error of selection increased with the number of
neurons. Other studies, though not explicitly stated by the authors, relied on manual adjustment combined
with early stopping to manage overfitting. Importantly, Begi¢ Juri¢i¢ and Krsti¢ (2024) also stated that
after 10 consecutive epochs, the training is stopped if there was no improvement in validation loss, and
the training is stopped at 100 epochs to avoid excessive computation [13]. Such approaches demonstrate
how incremental or early stopping criterias can be effective compared to other search methods, especially

in resource-limited contexts.

Evaluation, Validation and Cross Validation

The evaluation of these ML-based models relies on quantitative evaluation metrics that measure
the difference between the predicted and the actual consumption values, evaluating whether the model’s
performance was satisfactory or not. Some common evaluation analysis that measure the performance’s
error include: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE) and the Mean Absolute Percentage Error (MAPE); the lower these metrics are, the better the
model has performed [9]. MAE, which measures the average magnitude of prediction errors, is less
sensitive to outliers, meaning it is suitable for noisy data sets, whereas Root Mean Squared Error (RMSE)
is also commonly used as it penalizes larger deviations more strongly [64]. Other metrics such as R?
indicates model fit (the higher the R?, the better the model performance is) or MSE, which is common for
optimization tasks but less interpretable than other metrics [64].

Cross-validation (CV) is a resampling procedure that improves the reliability of ML models by
ensuring that the performance is evaluated across multiple partitions of the dataset. By randomly shuffling
the data into diverse subsets of train and test sets, in which each contains a representative sample of the
data [55], it mitigates the risks of obtaining biased results from relying on a single train-test split.
According to Hasanov et al. (2022), one of the most widely used CV approaches is k-fold cross-validation
where the dataset is repeatedly split into k folds, or subsets, to be trained on k-1 folds and tested

repeatedly, and results are then averaged [55]. This method not only reduces variance and improves
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generalization ability, but for school settings which usually have scarce datasets, k-fold CV could
effectively maximize the amount of data available by allowing each data point to be used for both training
and validation which provides a more robust and generalizable estimate of model’s performance [65].
Several studies in the educational energy forecasting literature have applied k-fold CV to strengthen their
model, such as Run et al. (2023) [9] who assessed model performance using 10-fold CV. Similarly,
Muhammad Faiq et al. (2023) applied a 5-fold CV combination with a grid search to tune the
hyperparameters of a SVR model. Ortega-Diaz et al. (2025) study in Colombia slightly differs in the way
it initially splitted the data into an 80:20 training-testing split but also applied k-fold CV within only the
training set. The authors identified that, due to the limited data available, the four-fold (k = 4) cross
validation allowed them to best maintain low computational cost while achieving a balance between bias
and variance [21]. Chung and Yeung (2020) [11] applied Leave-One-Out Cross-Validation (LOOCV),
which is another CV technique that is effective when datasets are small. In their study, Chung et al. used
LOOCYV to check for overfitting in stepwise BS models by comparing training errors with LOOCV sum
of squared errors, and found that they were similar which indicated no serious overfitting. While LOOCV
could offer enhanced accuracy for specific models compared to k-fold CV, which could be beneficial for
some school settings studies with limited data, it requires greater computational resources [66].

A large portion of case studies on energy forecasting in educational buildings rely on sequential
time series data such as historical electricity load, occupancy schedules, lagged loads, or weather
variables in which the latter observations are dependent on the previous patterns. Because of this, in such
cases, the common k-folds CV which assumes data points are independent of each other and allows
random reshuffling, cannot be applicable as randomly splitting these time-dependent sequences could risk
data leakage, or future information leaking into the training set [55]. Instead, time series require CV
approaches that preserve the chronological order of data by training the model on past observations and
validating it on the future observations while still ensuring multiple rounds of training and validation. One
of the most commonly used time-aware approaches is the rolling window method where the dataset is
divided into subsets and the training set is gradually expanded and tested on subsequent folds of the data,
which ensures that the model is always trained on past observations and evaluated on future ones. Among
the case studies, this method could be seen in research by Shahid et al. (2023) which used 3-8 years of
historical data of sampled Swedish school buildings for training and 2022’s data as the testing set. Wasesa
et al.’s study, which also depends on time series data, used the dataset from 1 March 2020 to 30 April
2021 for training, the dataset from 1 May 2021 to 31 May 2021 for validation, and data from 1 June 2021
until 30 June 2021 to test for accuracy scores [15]. It is important to note, however, that while time-aware

CV methods are essential for sequential datatasets, many case studies reviewed in this paper, including

RIMA, v7, nl, 2025, e256.



Exploring how Industry 4.0 and AI Technologies Can be Applied in the Agricultural Food Supply Chain: A Systematic
Literature Review

ones that have time-dependent input variables, do not explicitly state in their methodology whether the
chronological nature of data is preserved in the validation process. In energy forecasting studies of school
settings, it is crucial to address whether the temporal dependencies were accounted for, as that may raise

concerns about potential biases in the models’ performances.

Discussion of common models

This section will discuss some of the most commonly employed ML approaches and most
outstanding models from different model families for school load forecasting in recent years, spanning
from traditional linear regression models and neural networks such as ANN, to advanced architectures
like XGBoost or hybrid deep learning techniques. When assessing and comparing each approach,
multiple factors including applicability, data availability, computational capacity and resource constraints
are taken into account. Overall, through providing an overview of each model, summarizing their
strengths and weaknesses, and examining their performance as reported in recent empirical studies of
real-world school settings, this discussion section aims to inform school administrators in selecting a

suitable energy management model for their own schools.

Multiple Linear Regression (MLR)

In recent years, linear techniques have been popularly utilized for load forecasting, especially
load forecasting in school settings. Linear regression analysis, which uses the independent variable to
predict the independent variable, estimates the coefficients of the linear equation that best predicts the
independent value by fitting a straight line that minimizes discrepancies between predicted and actual
values [22]. In this section, the paper will discuss one of the most common linear techniques used in
school energy prediction: Multiple Linear Regression (MLR).

Despite the emergence of numerous comprehensive techniques, statistical and hybrid methods,
linear techniques remain a popular and suitable choice in school energy forecasting, especially serving as
a method of preliminary energy assessment. Across current literature, those complex methods are
reported as requiring specialised softwares, user expertise as well as a model calibration; on the other
hand, linear regression analysis techniques overcome such difficulties by providing a reliable alternative
for unskilled users or resource-limited settings [23]. Namely, MLR method, which incorporates multiple
explanatory features, does not require calculation tools such as personal computers or software programs
[23], making it one of the most simple, low-cost, and interpretable prediction methods. In the context of
school energy forecasting, typical applications include benchmarking annual consumption across

institutions, short-term load prediction using climatic variables and operational schedules, or being used
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as baseline in school building energy prediction against other techniques. Several studies have reported
moderate accuracy in MLR performances. Specifically, in their study across schools in Fiji, Prasad et al.
[12] reported moderate accuracy in MLR model (8c) with an R? = 73.3% and an RMSE = 0.2248. MLR
models usually surpass Simple Linear Regression (SLR) techniques, as Nebojsa JuriSevi¢ et al. (2021)
reported SLR model achieving lower precision than MLR model (R? = 0.84 vs R? = 0.89) [16]. Jurii¢ &
Krsti¢’s study [13] which had a large multi-building dataset (149 schools) also reported MLR model’s
achieving good performance of R? values of 0.950 and 0.949 for the training and validation sets,
respectively; ANN models used in the same study achieved only modest improved accuracy of R* =
0.957, indicating that with a larger cross-sectional dataset of school districts with multiple schools, MLR
can be competitive in its accuracy and predictability.

Despite being low-computational and interpretable, the MLR method has major limitations, the
first clear drawback being its inability to model non-linear relationships between independent and
dependent variables [12]. This is crucial when considering the context of load forecasting in schools:
school energy use is often influenced by non-linear effects such as temperature thresholds, occupancy
levels, or user behaviors, which linear regression alone cannot capture. Secondly, linear methods like
MLR face the issue of multicollinearity among independent variables, restricting some variables that
could influence the output to be utilized; for example, regarding influential but non-linear variables as
non-significant [16]. Thirdly, linear fits can underestimate high loads, exhibiting poor performance at
extreme high or low consumption ranges, as results in study by Nebojsa JuriSevi¢ et al. (2021) indicate
both the MLR and SLR models achieved low accuracy in the high and low-consumption range, though
MLR did exceeded SLR’s accuracy by 11% in the high range [16]. Similarly, study by Run et al. [9] of
schools in France which used two MLR models: first order and two-way interaction models also showed
that even though the two-way interaction model did improve in accuracy for both training (R? = 74%) and
testing set (R* = 77%) compared to one-way model, it still underestimates results for higher loads (>
30kWh/hour). Moreover, results of the same study also suggest high variability in performances across
different buildings, with the model’s best performance being GMP building (R? =76%, MAPE~=22%), GC
moderate (R?*~64%, MAPE~=26%), and performed unacceptably poorly on GEII building (R*~55%,
MAPE~=69%) , demonstrating MLR’s sensitivity to building heterogeneity. For this reason, Run et al.
(2020) deemed MLR as mainly a preliminary model that resolves immediate energy management needs.
Similarly, JuriSevi¢ et al. [16] also suggested that in low heat consumption, linear methods achieve
relatively low prediction, suggesting that when school energy demand falls into a lower range (e.g.,

summer break), regressions forecasts are less reliable.
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In short, linear regression techniques such as MLR are especially helpful as baseline models in
school energy forecasting due to their low computational demand, interpretability and modest data
requirements; such characteristics are especially useful when considering an energy management solution
for schools with limited IT resources or schools where complete metered datasets or complex computing
softwares are unavailable, allowing even unskilled school administrators to gain not highly accurate but
still helpful insights on their school’s energy demand. Nevertheless, compared to other models, linear
regression methods usually achieve much lower accuracy, and such techniques are not to replace a
dynamic simulation model; rather, they provide a simple tool for determining energy needs [23] that is
applicable to most resource-limited schools. Rather than the final forecasting solution, these techniques
often serve as a preliminary model [9], or a benchmarking model, like in the study by Begi¢ Juri¢i¢ and
Krsti¢ (2024), ANN models were benchmarked against MLR which effectively served as a simple and

transparent baseline that more advanced models can utilize to improve upon [13].

Artificial Neural Networks (ANN)

Neural networks are computational architectures that follow the way neuronal structurals of brains
process information [24], composed of layers of interconnected nodes called neurons where each
connection carries a weight and each neuron applies an activation function and bias term to determine the
output [25]. Thus, the layered architecture allows such models to capture complex and non-linear
relationships [24], making them very suitable for energy forecasting in schools where relationships within
data are oftenly non-linear. Among neural network techniques, Artificial Neural Networks (ANN) are
among the most widely used Machine Learning models for load forecasting in schools. ANNs are
typically split into an input layer which receives predictor variables; one or multiple hidden layers
depending on the complexity of the task, which transform data through weighted connections; and an
output layer that produces the final prediction [25]. Notably, in forecasting tasks, ANNs are commonly
implemented as feedforward networks where data flows in the forward direction [25], fitting for school
forecasting where many data variables are sequential and time-dependent.

There are numerous advantages to using ANNs in school energy prediction, one of which is that
the multilayered structure enable that to model highly non-linear and complex relationships between data
that some traditional regression approaches fail to capture [24], which allow them to align with the
complex dynamics of school building energy systems. ANN models are flexible and able to integrate vast
amounts of data [25] from multiple sensors, weather inputs, and occupancy data, which could effectively
support energy management and scheduling. Moreover, according to Runge, J., & Zmeureanu, R. (2019),

ANNs have the ability to learn data directly without deep understanding of the physical system or
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complex programing [25]; rather, they automatically adjust their internal weights during training and
flexibly adapt to different contexts and robustness accordingly [25,27]. Multiple studies using ANNs for
handling diverse and irregular load patterns show better predictive performances compared to those of
time-series and regression-based models, reporting that they do not only achieve higher accuracy but
might also require fewer computational resources than other approaches in some cases [26]. For instance,
in the study of Serbian schools, Nebojsa JuriSevi¢ et al. (2021) [16] applied ANN to hourly consumption
data from multiple kindergartens which saw significant gains compared to Decision Tree and surpasses
all other models in terms of accuracy in all consumption ranges: achieving high accuracy of R?~0.96
(training) and R?~0.92 (testing). Most importantly, ANNs maintained its accuracy in across different
consumption ranges: in the higher range, the models achieved MAPE value of just 9% compared to that
of DT with 16%; in the low and medium consumption range, the MAPE value were 28% vs. 16%, and
24% vs. 12% for ANN and DT, respectively, demonstrating ANN’s ability to handle irregular load
patterns typical of schools while maintaining accuracy across various consumption ranges. Similarly,
Begi¢ Juri€i¢ and Krsti¢ (2024) [13] trained an ANN model configured with a 3-5-1 architecture and also
achieved significantly highly accurate performance of R?~0.957 (training) and R?*~0.954 (validation) [13]
with RMSE values of 3024.25 and 3415.75, respectively, outperforming multiple linear regression (MLR)
benchmarks and generalize “reasonably well to unseen data.”

On the other hand, ANN models also have a few limitations. The most major one, according to
Runge, J., & Zmeureanu, R. (2019), is limited generalization outside of their training set [67], meaning
ANN models trained on season or context-specific data may not always transfer well to other conditions
(e.g., model trained in summer failing in winter), which requires continuous retraining strategies to
maintain accuracy that can be computationally intensive [25]. This limitation is also acknowledged the
study by Begi¢ Juri¢i¢ and Krsti¢ (2024) where the authors noted that since the models are trained on a
single country dataset specific to that setting, their generalizability to “other regions with different
climatic conditions and building practices are limited” [13]. Compared to other models such as CNN-
BiLSTM hybrids in the study by Ahmad et al. (2024), standard ANN models were found to under-
forecast weekday peak loads due to the simpler algorithm compared to more complex models, while
CNN-BiLSTM hybrids reduced the error rates in nearly half [19]. In [19], ANN was mainly used as a
baseline model for more complex models that are suitable for complex load dynamics such as CNN-
BiLSTM and LSTM to be benchmarked against. Moreover, ANNs also suffer from overfitting that stems
from learning too closely from training data thereby capturing noise rather than generalizable patterns,
which reduces accuracy, especially for long-horizon predictions [25]. Study by Prasad (2024) highlighted

this risk as they emphasized how ANN models’ performance were sensitive to the number of parameters,

RIMA, v7, nl, 2025, e256.



Exploring how Industry 4.0 and AI Technologies Can be Applied in the Agricultural Food Supply Chain: A Systematic
Literature Review

available data points and missing values as the models improved significantly and yielding higher RMSE
values for modeling with 75 data points than compared to 100 data points [12]; this shows how smaller,
incomplete school datasets with missing variables require more caution in implementing ANNSs.
Developing and implementing effective ANN architectures for school load forecasting still
requires high expertise and careful hyperparameter tuning [25] to ensure high performance. In the study
in Serbia, feature selection and hyperparameter configuration using a genetic algorithm called
Evolutionary Assembled Artificial Neural Network for optimization required 50 generations and 200
population size [16]. This development of the EAANN model for configuration required the MATLAB
software, which again underlines the computational cost of robust ANN development. In the Croatian
study, ANN training relied on early stopping and fixed epochs to avoid excessive computation [13].
When schools are considering energy management solutions, computational costs and expertise
requirements are crucial factors to be mindful of, and accordingly, schools with limited technical
resources may struggle to implement and maintain ANN systems. Finally, due to the “black-box” nature
of ANNS, they are often difficult to interpret and develop [12,16], which makes interpreting more difficult
and reduces transparency for decision-makers in school, especially ones without much expertise in the
field. Overall, ANNs are most suitable for schools with moderate or large but well-structured and
complete datasets, the resource capability for hyperparameter optimization, and a need to capture non-

linear energy demand behaviors.

Extreme Gradient Boosting (XGBoost)

Ensemble learning is a family of ML techniques that combine multiple diverse base learners to
each high predictive performance, as when those models are put together, they can compensate for each
other’s errors, thereby reducing the bias and reliance as well as producing more robust predictions
[29,30,31] that cannot be achieved by any learning algorithm alone. Ensemble learning approaches are
usually divided into bagging where the model learns independently in parallel, and boosting, where
models are trained sequentially so that the following model corrects the individual errors of the previous
one, thereby iteratively reducing bias and improving performance [33].

For the purposes of this paper, this section will discuss XGBoost (Extreme Gradient Boosting), an
emerging technique that is gaining popularity in load forecasting tasks for its superiority compared to
traditional gradient boosting methods due to its robustness and high predictive ability. More specifically,
XGBoost’s improved performance can be attributed to additional optimizations in computational
efficiency, such as incorporating algorithm for finding optimal splits in the tree [29], which allowed faster

training time; and the incorporation of a regularization term in the loss function that allows an increased

RIMA, v7, n2, 2025, €256.



Exploring how Industry 4.0 and AI Technologies Can be Applied in the Agricultural Food Supply Chain: A Systematic
Literature Review

ability in handling missing values [33] and most notably, significantly prevents overfitting, an issue
prominent in boosting-based methods that learn too closely on noisy samples [29,31]. For those reasons,
the XGBoost algorithm minimizes the need for feature engineering, including data normalization and data
scaling [31]. Moreover, according to Moon et al. (2024), robust XGBoost models are especially effective
for large, high-dimensional datasets and complex modeling tasks [29], which renders them especially
effective and scalable for capturing complex, non-linear relationships of large, complex school datasets
that are dependent on various drivers (weather, occupancy, schedules). This could be shown in the study
by Wasesa et al. (2022) on technological university buildings in Bandung in the context of COVID-19,
where XGBoost models consistently outperform the other two models used in the study, SVR and
ARIMAX, and achieved the best predictive accuracy across multiple experimental settings. Namely, the
XGBoost-3 model achieved the lowest MAPE value of 11.9% while ARIMAX and SVR reported MAPE
values of 13.5% and 12.5% [15], as well as minimized absolute errors with the lowest MAE value of 23.9
compared to ARIMAX (32.3) and SVR (25.) [15] despite having a larger, more complex set of predictors.
The study also highlights XGBoost models’ strength in handling multiple predictors and non-linear
relationships as the author notes that by including a combination of temporal lags, electricity
consumption, COVID-19 data, Google mobility trends as predictors, the XGBoost-8 model saw a
significant improvement in its RMSE. Thus, such findings emphasize XGBoost’s ability to handle
complex, high-dimensional inputs while maintaining accuracy and proves it suitable for forecasting tasks
in school settings with large datasets with many predictors.

On the other hand, despite the advantages, XGBoost models also face several limitations that are
crucial to be taken into account when considering school energy demand forecasting applications, one of
which is their tendency to overfit when hyperparameters are not carefully tuned, causing the performance
to potentially decrease when inputs are highly irregular [29,34]. Unlike simpler models, XGBoost often
requires intensive hyperparameter optimization of multiple interacting hyperparameters such as learning
rate or maximum depth. In the study by Wasesa et al. (2022), the authors noted that their XGBoost
models had to be optimized using a hyperparameter grid search that optimized maximum depth, learning
rate, minimum child weight, objective, subsample, and tree method. Even though XGBoost achieved
superior accuracy with the best model achieving significantly low error (MAPE = 19.6%, MAE =
81.494), it also came at the cost of significantly higher training time and computational resources
compared to SVR and ARIMAX models used in the same study.Moreover, the model is also highly
sensitive to sample size and input dimension, as Si et al. (2024) stating that “blindly increasing the input
dimension” will increase the difficulty of capturing important interactions [35]. Overall, such findings

suggest that XGBoost not only requires large, structured datasets but also careful hyperparameter tuning
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to prevent overfitting, which is computationally demanding and requires specialized techniques [34],
making the development process more difficult and resource-intensive compared to simpler models.
When these factors are taken into account, XGBoost techniques become less suitable for schools with
large and irregular datasets, as well as schools with limited computational resources and expertise for

intensive hyperparameter tuning.

Long short-term memory (LSTM) and hybrid LSTM architectures

In recent years, deep learning approaches such as CNNs and LSTMs have gained significant
attention in the field of load forecasting for school settings with multiple schools implementing those
methods. Long Short-Term Memory (LSTM) networks are a specialized form of recurrent neural
networks (RNN) which solves the vanishing and exploding gradient issues that occur within conventional
RNNs [36]. The architecture includes memory cells regulated by the input gate, output gate, and forget
gate [39], which manage the memorization, passing and discard of information [38], allowing LSTM
models to preserve long-range temporal dependencies while handling non-linear data of complex,
dynamic relationships in energy consumption data [36,39]. LSTM models are also shown to consistently
outperform traditional RNNs and linear approaches in capturing long-term dependencies [39].
Muhammad Faiq et al. (2023) [18] applied LSTM models to forecasting a Malaysian university campus
and reported that the model outperformed both SVR and GPR across 20 simulations run as well as
achieved a low MAE value of 165.20 kWh and a RMSE of 572.55 kWh, compared to SVR (MAE
2851.34 kWh, RMSE 3270.84 kWh) and GPR (MAE 999.88 kWh, RMSE 1310.11 kWh), demonstrating
the model’s ability to effectively extracting long-term and nonlinear temporal dependencies in education
building settings. Due to their ability to retain important historical information while removing irrelevant
data, LSTM models are also highly effective for capturing patterns within sequential data, making them
suitable for energy forecasting tasks in schools with large historical datasets that encompasses multiple
variables (such as average pressure, temperature, humidity, rainfall, etc., [19]) or time-dependent data.

However, despite their strong efficacy in time-series forecasting, LSTM, as standalone models,
still face several limitations that undermine their practicality in load forecasting for school settings. The
first major limitation comes from the fact that LSTM models’ complex architecture, which is built around
multiple gates and memory cells [37], makes them highly computationally intensive while requiring
increased training time and increased memory consumption [37], especially when the number of layers
and hidden state size rise [38]. Moreover, LSTMs are also highly sensitive to hyperparameter selection,
and performance often strongly depends on the choices of the number of layers, hidden units, batch size,

and learning rate [35,37] which greatly affect the training stability; however, fine-tuning those
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hyperparameters often requires extensive trial and error as well as ML expertise. LSTM models are also
vulnerable to overfitting risks [37], especially when data are sparse or noisy, which is a common situation
in school energy data where historical, high-resolution datasets may be limited. They also present
interpretability issues [37] due to their black-box nature, which may complicate explanation among
school administrators who need transparency for effective decision making. In [19], Muhammad Faiq et
al. (2023) also emphasized the fact that LSTM requires huge historical data to make accurate predictions,
and also depends greatly on external features such as schedule and weather information to achieve
optimal accuracy, showing that LSTM is especially vulnerable to limited data. Overall, when considering
LSTM models for school energy management, such constraints mentioned above should be taken into
account as schools with limited computational resources or expertise in the implementation and
interpretation of LSTM models, schools with sparse historical data that are incomplete without external
features, or schools without the budget for intensive hyperparameter tuning might be unfit for this model.

Another drawback of LSTM comes from their difficulty in handling very long sequences, because
even though single LSTMs were designed to address gradient issues in conventional RNNs, studies
[37,39] emphasize that they still struggle to handle extremely lengthy input sequences and may lose some
key information when processing such sequences; they may only perform well on specific types of load
data and perform poorly on others due to their fixed structures [39]. This motivates researchers to often
adopt hybrid methods combining different algorithms (e.g., CNN-LSTM, RNN-LSTM, etc.,) that
complement or preprocess the data to reduce errors presented in individual models in order to improve
accuracy and robustness [39].

Hybrid LSTM architectures have become increasingly popular among researchers and building
administrators in overcoming weaknesses of standalone LSTM models, particularly in complex
forecasting tasks such as school energy demand forecasting. Hybrid LSTM architectures combine the
LSTM models with other algorithms that excel at complementary tasks while preserving LSTM’s core
advantage of modeling temporal dependencies, thus addressing the limitations of single LSTMs in
handling complex data patterns [38,39,40]. For example, CNN models have the outstanding ability to
effectively extract local patterns, fluctuations [41], and spatial information, so when combined with
LSTM’s long-term modeling capabilities, the CNN-LSTM technique is able to capture both daily trends
and sharp variations in energy consumption, thereby utilizing each model’s strengths as well as overcome
individual limitations to improve prediction accuracy [42]. Shahid et al. (2023) also emphasized this
operational robustness in handling fluctuations as they stated that the CNN-LSTM values are “very
narrow to the actual load values” [20]. Cao et al. (2023) [17] also reported in their study that by adding
convolutional preprocessing, the CNN-LSTM model reduced RMSE by 8.40% and MAE by 6.95%

RIMA, v7, nl, 2025, e256.



Exploring how Industry 4.0 and AI Technologies Can be Applied in the Agricultural Food Supply Chain: A Systematic
Literature Review

relative to LSTM without convolution, showing the benefits of incorporating the strengths of CNN in
extracting and reducing errors in school energy prediction. Load data of schools usually contains both
complex temporal and non-temporals patterns that single LSTMs might struggle to fully capture [44], but
hybrid approaches could effectively model complex non-linear relationships [40,42], allowing the system
to adapt to dynamic environmental and behavioral variables such as weather, occupancy, or seasonal
variations that drive school energy use. Incorporating the strengths of another model such as CNNs,
RNN:Ss, or even fuzzy logic and gradient boosting models [40] in the preprocessing or feature-extraction
stage before the LSTM allows hybrid models to filter redundant information, learn complex data patterns
and improve temporal feature extraction [40] in order to improve consistency as well as generalizability
across various settings [43]. Multiple studies [35,39] have consistently reported that hybrid LSTMs, by
filtering noise and outliers to reduce biases, outperform other single LSTM techniques in terms of
accuracy [40], achieving lower MAPE and RMSE values in both short and long-term forecasting tasks
[41,43]. In real-world school datasets, such as one of electricity demand in six Swedish schools [20],
CNN-LSTM was reported to achieve good accuracy with RMSE and nRMSE of roughly 18% to 25% and
5% to 6% respectively, and that weekday RMSEs feels from =~45%-70% to ~19%—24% after CNN-
LSTM tuning. More notably, it was also noted that hybrid approaches such as RNN-LSTM or CNN-
LSTM still exhibit robustness even in noisy or incomplete datasets [40], a feature that may be especially
valuable for schools where metering data may be inconsistent or contain occasional irregular patterns
such as holidays [42,43]. For instance, Ahmad et al. (2024) used an advanced neural hybrid architecture
CNN-BIiLSTM on a compass dataset, and after Bayesian hyperparameter optimization and feature
engineering, obtained a remarkable RMSE = 165.87 kW and MAPE = 6.99%, outperforming both
BiLSTM (RMSE 198.12 kW, MAPE 8.77%) and ANN. The same study also reported that the model still
remains accurate and generalizable across different days of the week including the weekend, which shows
how hybrid models could consistently perform well in school load forecasting tasks, even with varying
load patterns [19].

However, these performance improvements come at the cost of significantly greater model
complexity and data demand which may limit implementation in resource-limited or public schools. The
most obvious shortcoming of hybrid LSTM models is that their complex structures could significantly
complicate preprocessing and hyperparameter tuning, thus requiring more training time, memory and
computational resources, even more than conventional LSTMs [39,43], and although mitigation strategies
such as regularization are possible, they demand further costs and expertise [42,43]. Moreover, due to that
complexity, hybrid LSTM structures also typically require larger and more high-resolution training

datasets and additional data for learning long-term patterns [40], as insufficient data raises the risk of
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overfitting. For instance, Ahmad et al.’s campus data spanned over 343 days and contained 16,474 data
points. Additionally, same as with single LSTM models, interpreting prediction results of hybrid LSTMs
could be difficult due to the complex internal mechanisms, potentially posing challenges for schools that
need immediate decision-making [40,43]. Finally, while hybrids frequently show improvements in short-
term errors, in some cases, hybrid architectures are only comparable to the single LSTM model [20],
which implies that the additional complexity does not guarantee significant gains in every school context,
therefore administrators should take into account such tradeoffs when considering more complex

architectures.

CONCLUSIONS

This review synthesizes recent works on ML methods for forecasting energy demand in schools
and campus buildings, as well as identifying consistent patterns and assessing the practicality of
implementation across studies. Overall, ML methods show clear ability to improve energy management in
schools. Historical load, weather/thermal variables, occupancy/schedule signals, and simple building
attributes (floor area, AC capacity, etc.) appear to be the most reliable predictors of school energy use.
Hybrid and ensemble approaches such as LSTMs generally achieve the lower accuracy, but their
improved performance comes at the cost of greater data requirements, computational complexity,
hyperparameter tuning, and being more difficult to interpret for school administrators without much
expertise.

Several limitations of this paper include the limit in scope: since the review intentionally mostly
covers peer-reviewed literature published between 2019 and 2025, this timeframe may have excluded
relevant earlier or non-English works. Additionally, most papers reviewed are context-specific; the ML
models are only applied to schools and campuses within specific settings, rely on small single-site
datasets, use different temporal resolutions, and apply different preprocessing and validation techniques,
which limits the generalizability and comparability across different models and settings. Finally, several
papers do not explicitly report steps in their methodology, omitting crucial details such as the train/test
split techniques or cross validation techniques used, making it more difficult to fairly assess and
reproduce the method. Moving forward, future research should focus on clearly addressing the
methodology, which includes data resolution, data preprocessing, feature engineering processes,
hyperparameter optimization procedures, as well as noting resource requirements and interpretability in

order to enhance reproducibility and remain accessible and actionable for school administrators.
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